Use this URL to cite or link to this record in EThOS:
Title: Investigating equine host barriers to infection with influenza A viruses
Author: Crispell, Joanna Lorna
ISNI:       0000 0004 7224 0871
Awarding Body: University of Glasgow
Current Institution: University of Glasgow
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Access from Institution:
Influenza A viruses (IAVs) are significant pathogens of humans and animals whose main natural host is considered to be wild waterfowl. IAVs have jumped the species barrier on multiple occasions, sometimes with devastating consequences. Successful infection and onward transmission (i.e. viral emergence) requires highly specific interactions between virus and host proteins. However, how an avian virus adapts to a mammalian host to establish as a novel pathogen after initial interspecies transmission is not yet clear. It was hypothesized that adaptation of an avian virus to mammals would involve changes in virus-host interactions that would result in more efficient viral replication and counteraction of immune responses. To test this hypothesis this thesis firstly describes the characterization of an equine dermal cell line (E.Derm) for the study of infection with EIVs. A panel of H3N8 AIVs was selected to investigate how equine host barriers affect the replication kinetics of distinct viruses. Finally, the transcriptome of the equine cells was investigated after infection with two evolutionary distinct H3N8 equine influenza viruses (H3N8 EIVs), and treatment with interferon-alpha (IFN-α). H3N8 EIV is an avian-origin virus that emerged in 1960s and has been circulating in horses for over 50 years, thus providing a natural model system to study the interspecies transmission and post-transfer adaptation of an avian influenza virus to a mammalian host. To examine the cellular response to infection, equine dermal cells (E.Derm) were infected with either A/equine/Uruguay/63 or A/equine/Ohio/2003. Total RNA was extracted at 4 and 24 hours post-infection for RNA sequencing and downstream transcriptomics analysis. Mock-infected cells and interferon-treated cells were also included for comparison purposes. RNA-seq data were analysed using CuffDiff2 to identify differentially expressed (DE) genes between samples. Ingenuity Pathway Analysis was used to determine the intracellular pathways in which DE genes were involved. The results showed clear differences on the intracellular pathways affected between the viruses, which were especially evident during the eclipse phase of virus replication. Distinct intracellular pathways were identified as important for EIV adaptation to the horse, which in turn could be employed by other avian influenza viruses to establish in mammals.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QR355 Virology