Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.744062
Title: Light in scattering media : active control and the exploration of intensity correlations
Author: Paniagua Diaz, Alba Maria
ISNI:       0000 0004 7232 2279
Awarding Body: University of Exeter
Current Institution: University of Exeter
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
When light encounters scattering materials such as biological tissue, white paint or clouds, it gets randomly scattered in all directions, which traditionally has been seen as a barrier for imaging techniques (reducing their resolution) or sensing, due to the reduction of the penetration depth of light. However, in recent years it has been shown that scattering might not necessarily be an impediment, and that the knowledge of the properties of multiple scattering can be indeed useful for imaging, sensing and other applications. In the first part of this thesis (Chapters 2 to 5) we study the implications of manipulating the light incident on a multiply scattering material. We experimentally show how by actively controlling the output light of a bad quality laser we manage to not only improve its beam quality, but also in an energy-efficient way, in comparison with traditional methods. In a different experiment presented in this thesis, we show how the active control of the light incident on a scattering material can be useful to improve sensing through scattering media, by means of increasing the transmission and energy deposited inside (Chapter 5). In the final part of the thesis we present the first experimental observation of intensity correla- tions between transmitted and reflected patterns from a scattering material (Chapter 6), exploring how it depends on the parameters of the scattering medium. In the last part of the thesis (Chapter 7) we present a new imaging technique based on the use of the intensity correlations described in the previous chapter, opening new possibilities to non-invasive imaging through highly scattering materials.
Supervisor: Bertolotti, Jacopo ; Barnes, William L. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.744062  DOI: Not available
Keywords: scattering ; speckle ; correlations ; light ; wavefront shaping
Share: