Use this URL to cite or link to this record in EThOS:
Title: Impairing hepatocyte regeneration to determine the regenerative capacity of the biliary epithelium
Author: Raven, Alexander Philip
ISNI:       0000 0004 7230 8522
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Liver injury stimulates hepatocyte proliferation, regenerating the liver through self-replication. In cases where there is severe, repetitive, parenchymal damage, as seen in human chronic liver disease, hepatocyte mediated regeneration becomes impaired. In this setting it is currently unclear whether endogenous biliary epithelial cells can repopulate the hepatocyte compartment. This thesis therefore aimed to address this point by lineage tracing the main two liver epithelia populations on a background of impaired hepatocyte regeneration. To impair regeneration, an Itgb1 transgene was specifically deleted, conditionally, from the hepatocyte epithelium. Long-term loss of β1-Integrin alone or with additional injury caused an epithelial ductular reaction of biliary origin. Alongside β1-Integrin ablation, the hepatocyte epithelium was also labelled with a heritable ROSA26LSLtdTomato reporter. Impaired hepatocyte regeneration mediated by β1- integrin ablation resulted in 25% of hepatocytes becoming tdTomato negative (non-hepatocyte derived). To verify that the non-hepatocyte mediated regeneration was originating from the biliary epithelium, anti-Itgb1 RNAi was administrated to K19CreERT LSLtdTomato mice. Resulting in tdTomato positive hepatocytes that had differentiated from the labelled tdTomato positive biliary epithelial cells. In summary, this thesis demonstrates that hepatocyte β1-Integrin ablation combined with toxic damage causes marked ductular reactions and results in a substantial regeneration of functional hepatocytes from the biliary epithelium.
Supervisor: Forbes, Stuart ; Ffrench-Constant, Charles Sponsor: Medical Research Council (MRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: liver ; regeneration ; liver regeneration ; stem cell