Use this URL to cite or link to this record in EThOS:
Title: Hybrid HVDC transformer for multi-terminal networks
Author: Smailes, Michael Edward
ISNI:       0000 0004 7230 8186
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
There is a trend for offshore wind farms to move further from the point of common coupling to access higher and more consistent wind speeds to reduce the levelised cost of energy. To accommodate these rising transmission distances, High Voltage Direct Current (HVDC) transmission has become increasingly popular. However, existing HVDC wind farm topologies and converter systems are ill suited to the demands of offshore operation. The HVDC and AC substations have been shown to contribute to more than 20% of the capital cost of the wind farm and provide a single point of failure. Therefore, many wind farms have experienced significant delays in construction and commissioning, or been brought off line until faults could be repaired. What is more, around 75% of the cost of the HVDC and AC substations can be attributed to structural and installation costs. Learning from earlier experiences, industry is now beginning to investigate the potential of a modular approach. In place of a single large converter, several converters are connected in series, reducing substation individual size and complexity. While such options somewhat reduce the capital costs, further reductions are possible through elimination of the offshore substations altogether. This thesis concerns the design and evaluation the Hybrid HVDC Transformer, a high power, high voltage, DC transformer. This forms part of the platform-less (i.e. without substations) offshore DC power collection and distribution concept first introduced by the Offshore Renewable Energy Catapult. By operating in the medium frequency range the proposed Hybrid HVDC Transformer can be located within each turbine’s nacelle or tower and remove the need for expensive offshore AC and DC substations. While solid state, non-isolating DC-DC transformers have been proposed in the literature, they are incapable of achieving the step up ratios required for the Hybrid HVDC transformer [1]– [3]. A magnetic transformer is therefore required, although medium frequency and non-sinusoidal operation does complicate the design somewhat. For example, inter-winding capacitances are more significant and core losses are increased due to the added harmonics injected by the primary and secondary converters [1], [2]. To mitigate the impact of these complications, an investigation into the optimal design was conducted, including all power converter topologies, core shapes and winding configurations. The modular multilevel converter in this case proved to be the most efficient and practical topology however, the number of voltage levels that could be generated on the primary converter was limited by the DC bus voltage. To avoid the use of pulse width modulation and hence large switching losses, a novel MMC control algorithm is proposed to reduce the magnitude of the converter generated harmonics while maintaining a high efficiency. The development and analysis of this High Definition Modular Multilevel Control algorithm forms the bulk of this thesis’ contribution. While the High Definition Modular Multilevel Control algorithm was developed initially for the Hybrid HVDC Transformer, analysis shows it has several other potential applications particularly in medium and low voltage ranges.
Supervisor: Shek, Jonathan Sponsor: Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: offshore wind ; MMC ; multilevel converter ; HD-MMC ; transformer ; DC transformer ; power conversion