Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.743838
Title: Individual tree detection and modelling above-ground biomass and forest parameters using discrete return airborne LiDAR data
Author: Wan Mohd Jaafar, Wan Shafrina Binti
ISNI:       0000 0004 7230 6914
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Individual tree detection and modelling forest parameters using Airborne Laser Scanner data (Light Detection and Ranging (LiDAR) is becoming increasingly important for the monitoring and sustainable management of forests. Remote sensing has been a useful tool for individual tree analysis in the past decade, although inadequate spatial resolution from satellites means that only airborne systems have sufficient spatial resolution to conduct individual tree analysis. Moreover, recent advances in airborne LiDAR now provide high horizontal resolution as well as information in the vertical dimension. However, it is challenging to fully exploit and utilize small-footprint LiDAR data for detailed tree analysis. Procedures for forest biomass quantification and forest attributes measurement using LiDAR data have improved at a rapid pace as more robust and sophisticated modelling used to improve the studies. This thesis contains an evaluation of three approaches of utilizing LiDAR data for individual tree forest measurement. The first explores the relationship between LiDAR metrics and field reference to assess the correlation between LiDAR and field data at the individual-tree level. The intention was not to detect trees automatically, but to develop a LiDAR-AGB model based on trees that were mapped in the field so as to evaluate the relationships between LiDAR-type metrics under controlled conditions for the study sites, and field-derived AGB. A non-linear AGB model based on field data and LiDAR data was developed and LiDAR height percentile h80 and crown width measurement (CW) was found to best fit the data as evidenced by and Adj-R2 value of 0.63, the root mean squared error of the model of 14.8% and analysis of the residuals. This paper provides the foundation for a predictive LiDAR-AGB model at tree level over two study sites, Pasoh Forest Reserve and FRIM Forest Reserve. The second part of the thesis then takes this AGB-LiDAR relationship and combines it with individual tree crown delineation. This chapter shows the contribution of performing an automatic individual tree crown delineation over the wider forest areas. The individual tree crown delineation is composed of a five-step framework, which is unique in its automated determination of dominant crown sizes in a forest area and its adaption of the LiDAR-AGB model developed for the purpose of validation the method. This framework correctly delineated 84% and 88% of the tree crowns in the two forest study areas which is mostly dominated with lowland dipterocarp trees. Thirdly, parametric and non-parametric modelling approaches are proposed for modelling forest structural attributes. Selected modelling methods are compared for predicting 4 forest attributes, volume (V), basal area (BA), height (Ht) and aboveground biomass (AGB) at the species level. The AGB modelling in this paper is extracted using the LiDAR derived variables from the automated individual tree crown delineation, in contrast to the earlier AGB modelling where it is derived based on the trees that were mapped in the field. The selected non-parametric method included, k-nearest neighbour (k-NN) imputation methods: Most Similar Neighbour (MSN) and Gradient Nearest Neighbour (GNN), Random Forest (RF) and parametric approach: Ordinary Least Square (OLS) regression. To compare and evaluate these approaches a scaled root mean squared error (RMSE) between observed and predicted forest attribute sampled from both forest site was computed. The best method varied according to response variable and performance measure. OLS regression was to found to be the best performance method overall evidenced by RMSE after cross validation for BA (1.40 m2), V (1.03 m3), Ht (2.22 m) and AGB (96 Kg/tree) respectively, showed its applicability to wider conditions, while RF produced best overall results among the non-parametric methods tested. This thesis concludes with a discussion of the potential of LiDAR data as an independent source of important forest inventory data source when combined with appropriate designed sample plots in the field, and with appropriate modelling tools.
Supervisor: Woodhouse, Iain ; Abd Latif, Zulkiflee ; Stuart, Neil Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.743838  DOI: Not available
Keywords: LiDAR ; Malaysia ; individual tree-based approach ; tree measurement ; density ; accuracy ; forest ecosystem ; carbon sequestration
Share: