Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.743831
Title: Identification of two MYB transcription factors that increase paclitaxel biosynthesis in cambial meristematic cells of Taxus baccata
Author: Ochoa-Villarreal, Marisol
ISNI:       0000 0004 7230 648X
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 09 Jul 2022
Access from Institution:
Abstract:
Paclitaxel is an anticancer natural product with several biomedical applications produced by Taxus species, with a demand exceeding its supply. We have developed cambial meristematic cells (CMCs) from Taxus cuspidata as high yield source of paclitaxel. The biosynthesis of paclitaxel is predominantly under transcriptional control. Thus, the identification of transcriptional regulators of paclitaxel biosynthesis and their subsequent manipulation may enable further yield enhancement in Taxus CMCs. Previously, Roche 454 sequencing was employed to establish the transcriptome of T. cuspidata CMCs treated with the plant immune activator methyl jasmonate (MeJA). The bioinformatic analysis identified 19 jasmonate related transcription factors (TFs), based on their differential expression. Results of the Arabidopsis thaliana transient assay screen identified two MYB TFs that constitute positive regulators for paclitaxel genes, named MYB3 and MYB4. In this thesis, MYB3 and MYB4 showed in vitro binding to the cis-elements in ten promoters of paclitaxel genes using the electrophoretic mobility shift assay (EMSA). Then, a Taxus CMC protoplasts transient assay demonstrated that the expression of MYB3 and MYB4 trans-activated all tested genes. Further, MYB4 was found to activate the 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) gene, key in the mevalonate pathway and precursor of paclitaxel biosynthesis. MYB3 and MYB4 were capable of auto-regulating their own transcription, constituting an important control point for paclitaxel biosynthesis. A possible mechanism for the early activation of MYB3 and MYB4 after MeJA elicitation is proposed. Finally, preliminary results on the expression of MYB3 and MYB4 in unelicited T. baccata CMC protoplasts indicate that their transient expression was sufficient to increase accumulation of paclitaxel and the precursor, 10-deacetyl baccatin III, highlighting their utility for paclitaxel production.
Supervisor: Loake, Gary ; French, Chris Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.743831  DOI: Not available
Keywords: cambial meristematic cells ; plant cell culture ; Paclitaxel ; transcription factors ; plant natural products ; anticancer
Share: