Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.743796
Title: Graph compression using graph grammars
Author: Peternek, Fabian Hans Adolf
ISNI:       0000 0004 7230 3449
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
This thesis presents work done on compressed graph representations via hyperedge replacement grammars. It comprises two main parts. Firstly the RePair compression scheme, known for strings and trees, is generalized to graphs using graph grammars. Given an object, the scheme produces a small context-free grammar generating the object (called a “straight-line grammar”). The theoretical foundations of this generalization are presented, followed by a description of a prototype implementation. This implementation is then evaluated on real-world and synthetic graphs. The experiments show that several graphs can be compressed stronger by the new method, than by current state-of-the-art approaches. The second part considers algorithmic questions of straight-line graph grammars. Two algorithms are presented to traverse the graph represented by such a grammar. Both algorithms have advantages and disadvantages: the first one works with any grammar but its runtime per traversal step is dependent on the input grammar. The second algorithm only needs constant time per traversal step, but works for a restricted class of grammars and requires quadratic preprocessing time and space. Finally speed-up algorithms are considered. These are algorithms that can decide specific problems in time depending only on the size of the compressed representation, and might thus be faster than a traditional algorithm would on the decompressed structure. The idea of such algorithms is to reuse computation already done for the rules of the grammar. The possible speed-ups achieved this way is proportional to the compression ratio of the grammar. The main results here are a method to answer “regular path queries”, and to decide whether two grammars generate isomorphic trees.
Supervisor: Maneth, Sebastian ; Buneman, Peter Sponsor: Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.743796  DOI: Not available
Keywords: compression ; grammar-based compression ; compressed graph representations ; hyperedge replacement grammars ; RePair compression ; straight-line graph grammars ; speed-up algorithms
Share: