Use this URL to cite or link to this record in EThOS:
Title: Exploiting anionically-tethered N-heterocyclic carbene complexes for small molecule activation
Author: McMullon, Max William
ISNI:       0000 0004 7230 0854
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 31 Dec 2100
Access from Institution:
N-heterocyclic carbenes (NHCs) can be used as ligands for organometallics complexes, which can then facilitate numerous catalytic applications, such as, C-H activation, small molecule activation and numerous materials applications. The use of anionically-tethered NHCs for usage with electropositive metals has been pioneered by the Arnold group within the last decade. This thesis describes the synthesis of both aryloxide- and amide-tethered NHC organometallic complexes of s-, p-, d- and f-block metals to provide a platform for small molecule activation. Once synthesised, the reactivity of some of these complexes were tested by reaction with CO2 with the aim of turning a molecule considered a harmful (environmentally), waste product into value added products, potentially providing an alternative fuel source. Chapter One introduces the use of anionically-tethered NHCs for use in a number of organometallic complexes as well as their current potential as catalysts for a number of important small molecules. This chapter focuses upon the differences between complexes tethered with anionic O, N, P, S elements, f-element NHC complexes and the use of d-block NHC complexes for catalysis. Chapter Two contains the synthesis and characterisation of a number of aryloxy-tethered NHC p-, d- and f-block organometallic complexes using the ligand H2(LArO R)2. The synthesis of SnII complexes including the synthesis of new ‘normal’ ‘abnormal’ complexes given enough steric bulk around the Sn centre due to the lone pair present in Sn complexes, preventing one of the ligands binding through the classical carbene position and therefore binding through the backbone C4 carbon. The synthesis of MII (Zn, Co and Fe) complexes to compare the solid-state structure and binding mode of the carbenes. The synthesis and characterisation of MIII (Ce and Eu) complexes to assess the solid-state structure and binding modes within f-bock complexes. Chapter Three investigates the reactivity of the MII complexes (Sn, Zn, and Fe) with CO2. Successful reactions were characterised using NMR and further treated with alkynes to target catalytic reactions. Chapter Four contains reactions to target a number of amide-tethered bis (NHC) s-, p-, d- and f-block organometallic complexes using the proligand, H4(LN Mes)Cl3. Deprotonation studies undertaken with a number of bases to give the MI (Li and K) salts and MII (Mg) salts and proved to be unsuccessful upon isolation. Reactions to synthesise the p-, d- and f-block complexes were then undertaken using in situ free carbene production as well as the attempted isolation of the free carbene, both of which also proved unsuccessful. Chapter Five provides an overall conclusion to the work presented in Chapters Two, Three and Four within this thesis. Chapter Six gives the experimental and characterising data for the complexes and reactions.
Supervisor: Arnold, Polly ; Robertson, Neil Sponsor: Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: N-heterocyclic carbenes ; NHCs ; aryloxide-NHC organometallic complexes ; amide-tethered NHC organometallic complexes