Use this URL to cite or link to this record in EThOS:
Title: Ceramide synthase 4 : a novel metabolic regulator of oncogene-induced senescence
Author: Dix, Flora Lucy
ISNI:       0000 0004 7229 4802
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Senescence is a cell stress program characterized by a stable cell cycle arrest and thus aims to protect against replication of potentially harmful cells. In oncogene-induced senescence (OIS) the cell cycle arrest is brought about by activation of an oncogene. This in turn initiates a DNA damage response and subsequently, the DDR induces p53-p21 and RB tumour suppressor pathways. The metabolism of senescent cells is highly altered, notably there is increased secretion of proteins and increased functional activity of certain metabolic enzymes. There have been many recent studies investigating the role of specific metabolic pathways in OIS and how they may be targeted for therapeutic benefit. This thesis aims to identify novel metabolic regulators of OIS, by combining high throughput RNAi screening and LC-MS based methods. This thesis has identified and validated 17 essential OIS metabolic genes; in this list, there was enrichment for genes involved in lipid biosynthetic processes. Lipid metabolism was an attractive focus for this thesis as it has not been extensively studied in current literature. Next, ceramide synthase 4 (CERS4) was extensively validated as a key enzyme for both OIS and replicative senescence. Using LC-MS based lipidomics, CERS4-driven rewiring of lipid metabolism in OIS was revealed and this corresponded with an accumulation of ceramides due to increased de novo ceramide synthesis. It was then confirmed OIS-related ceramide is mechanistically linked to cell cycle via the PP1-RB-E2F axis. Ceramide activates PP1, which physically binds to RB in a CERS4-dependent manner. PP1 is then able to dephosphorylate and activate RB, which inhibits transcription of E2F targets (cell cycle genes). Overall, this thesis identifies a metabolic checkpoint that links altered lipid metabolism with OIS.
Supervisor: Acosta, Juan Carlos ; Finch, Andrew Sponsor: Medical Research Council (MRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: senescence ; oncogene-induced senescence ; oncogenes ; fat content ; metabolic pathways ; ceramide synthase 4 ; CERS4