Use this URL to cite or link to this record in EThOS:
Title: Investigation of the function of delta-cadinene synthase with aza-analogues and site directed mutagenesis
Author: Loizzi, Marianna
ISNI:       0000 0004 7231 8675
Awarding Body: Cardiff University
Current Institution: Cardiff University
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
Terpenes are one of the most structurally varied families of natural products with extraordinary chemical properties that have been exploited for numerous applications. Sesquiterpene synthases are a family of metal-dependent enzymes that catalyse the cyclisation of farnesyl diphosphate (FDP) into a myriad of complex C15-isoprenoid hydrocarbons, the sesquiterpenes. δ-Cadinene synthase (DCS) from Gossypium arboreum (cotton tree) catalyses the formation of δ-cadinene (DCN), a bicyclic intermediate in the biosynthesis of important phytoalexins such us gossypol. Two mechanistic proposals have been made for the formation of δ-cadinene: a 1,10-ring closure mechanism leading to the key intermediate germacradienyl cation, or a 1,6-ring closure leading to theaalpha-bisabolyl carbocation. Previous investigation with fluorinated FDP analogues were in partial agreement with both scenarios and hence it was not possible to distinguish unambiguously between the two possible cyclisation reactions. To investigate the catalytic mechanism of DCS, enantiopure samples of the azaanalogues of alpha-bisabolyl cation and germacradienyl cation were needed. These compounds are designed as stable structural and electrostatic mimics of the putative short-lived carbocationic intermediates generated by terpene synthases, and hence often act as potent reversible competitive inhibitors (low Ki) of these enzymes. Here, the enantioselective total synthesis of R- and S- aza-analogues of the alpha-bisabolyl cation are described as well as the partial racemic synthesis of azagermacradienyl cation. Both enantiomers of aza-bisabolyl cation were goodmimics of α-bisabolene. They were competitive inhibitors of DCS, providing evidence for a 1,6-cyclisation closure. The second part of the project involved the investigation of the role of tryptophan 279 for the desolvation of the active site of DCS and therefore for the formation of DCN. Seven mutants of W279 were created. The data obtained showed that W279 is essential to prevent water from entering the active site and form the hydroxylate terpenoid germacradien-4-ol (GD4ol). Mutagenesis studies yielded a mutant, W279A, capable of making GD4ol as the sole product.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QD Chemistry