Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.742422
Title: Conformal loop quantum gravity : avoiding the Barbero-Immirzi ambiguity with a scalar-tensor theory
Author: Veraguth, Olivier J.
ISNI:       0000 0004 7229 1089
Awarding Body: University of Aberdeen
Current Institution: University of Aberdeen
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
In the construction of Canonical Loop Quantum Gravity, General Relativity is rewritten in terms of the Ashtekar variables to simplify its quantisation. They consist of a densitised triad and a connection terms. The latter depends by definition and by construction on a free parameter β, called the Barbero–Immirzi parameter. This freedom is passed on to the quantum theory as it appears in the expressions of certain operators. Their discreet spectra depend on the arbitrary value of this parameter β, meaning that the scale of those spectra is not uniquely defined. To get around this ambiguity, we propose to consider a theory of Conformal Loop Quantum Gravity, by imposing a local conformal symmetry through the addition of a scalar field. We construct our theory starting from the usual Einstein–Hilbert action for General Relativity to which we add the action for the massless scalar field and rewrite it in terms of a new set of Ashtekar-like variables. They are constructed through a set of canonical transformations, which allow to move the Barbero–Immirzi parameter from the connection to the scalar variable. We then show that the theory can be quantised by fulfilling the conditions for a Dirac quantisation. Finally, we present some first elements of the quantum formalism. It is expected that with such a scalar-tensor theory, the quantum operators should not depend on the free parameter directly but rather on the dynamical scalar field, solving therefore the ambiguity.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.742422  DOI: Not available
Keywords: Quantum gravity ; Scalar field theory ; Variables (Mathematics) ; Transformations (Mathematics)
Share: