Use this URL to cite or link to this record in EThOS:
Title: Centralisers and normalisers in symmetric and alternating groups
Author: Bilgic¸, Huseyin
Awarding Body: University of St Andrews
Current Institution: University of St Andrews
Date of Award: 1998
Availability of Full Text:
Access from EThOS:
Access from Institution:
In this thesis, we analyse the structure of the centraliser of an element and of the normaliser of a cyclic subgroup in both Sn and An. We show that the centraliser in Sn of a permutation can be written as a direct product of centralisers of regular permutations and that the centraliser of a regular permutation is a wreath product. In certain cases we prove that this wreath product splits as a direct product and we analyse the centre of the subgroup. We calculate the centraliser of a general permutation in An and show how this is related to the centralisers of regular permutations. We investigate the normaliser of the cyclic subgroup generated by an element of Sn and show how this is related to the centraliser of the permutation. We calculate the centre of the normaliser and investigate when the normaliser splits as a direct product. We carry out a similar investigation for normalisers of cyclic subgroups of An and investigate the relationship between normalisers in An and Sn. We give presentations for both centralisers and normalisers.
Supervisor: O'Connor, John Joseph Sponsor: Kahramanmaraş Sütçüimam University
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QA171.B5 ; Group theory