Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.740797
Title: On the use of transport and optimal control methods for Monte Carlo simulation
Author: Heng, Jeremy
ISNI:       0000 0004 7229 0043
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
This thesis explores ideas from transport theory and optimal control to develop novel Monte Carlo methods to perform efficient statistical computation. The first project considers the problem of constructing a transport map between two given probability measures. In the Bayesian formalism, this approach is natural when one introduces a curve of probability measures connecting the prior to posterior by tempering the likelihood function. The main idea is to move samples from the prior using an ordinary differential equation (ODE), constructed by solving the Liouville partial differential equation (PDE) which governs the time evolution of measures along the curve. In this work, we first study the regularity solutions of Liouville equation should satisfy to guarantee validity of this construction. We place an emphasis on understanding these issues as it explains the difficulties associated with solutions that have been previously reported. After ensuring that the flow transport problem is well-defined, we give a constructive solution. However, this result is only formal as the representation is given in terms of integrals which are intractable. For computational tractability, we proposed a novel approximation of the PDE which yields an ODE whose drift depends on the full conditional distributions of the intermediate distributions. Even when the ODE is time-discretized and the full conditional distributions are approximated numerically, the resulting distribution of mapped samples can be evaluated and used as a proposal within Markov chain Monte Carlo and sequential Monte Carlo (SMC) schemes. We then illustrate experimentally that the resulting algorithm can outperform state-of-the-art SMC methods at a fixed computational complexity. The second project aims to exploit ideas from optimal control to design more efficient SMC methods. The key idea is to control the proposal distribution induced by a time-discretized Langevin dynamics so as to minimize the Kullback-Leibler divergence of the extended target distribution from the proposal. The optimal value functions of the resulting optimal control problem can then be approximated using algorithms developed in the approximate dynamic programming (ADP) literature. We introduce a novel iterative scheme to perform ADP, provide a theoretical analysis of the proposed algorithm and demonstrate that the latter can provide significant gains over state-of-the-art methods at a fixed computational complexity.
Supervisor: Doucet, Arnaud Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.740797  DOI: Not available
Keywords: Transport theory--Statistical methods ; Optimal control ; Normalizing constants ; Sequential Monte Carlo ; Approximate dynamic programming ; Monte Carlo ; Mass transport ; Annealed importance sampling ; Reinforcement learning ; Markov chain Monte Carlo
Share: