Use this URL to cite or link to this record in EThOS:
Title: Novel approaches to the fabrication of nanoscale devices
Author: Balakrishnan, Nilanthy
ISNI:       0000 0004 7227 8992
Awarding Body: University of Nottingham
Current Institution: University of Nottingham
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
This thesis describes the effects of a post-growth hydrogenation on as-grown samples and device structures based on III-N-V and III-V semiconductor compounds. The spectral response of quantum wells (QWs) or superlattices (SLs) are tuned by the control dissociation of N-H complexes using a focused laser beam (photon assisted dissociation) or by thermal annealing. These approaches could be implemented in other materials and heterostructure devices, and offer the advantage of enabling an accurate control of the spectral response of a device using a layer compound with a single N- concentration. A focused laser beam is also used to diffuse hydrogen from the p-type contact layer towards the III-N-V superlattice in the intrinsic region of a p-i-n diode, thus creating preferential injection paths for the carriers and creating nanoscale light emitting diodes. Opportunities for realizing a movable micron size-light emitting diode (-LED) are also demonstrated. Moreover, room temperature electroluminescence from semiconductor junctions formed from combinations of n-InSe, p-InSe, p-GaSe and n-In2O3 is demonstrated. These p-n junctions are fabricated using mechanical exfoliation of Bridgman-grown crystals and a simple mechanical contact method or thermal annealing. These results demonstrate the technological potential of mechanically formed heterojunctions and homojunctions of direct band gap layered GaSe and InSe compounds with an optical response over an extended wavelength range, from the near-infrared to the visible spectrum. These layered crystals could be combined in different sequences of layer stacking, thus offering exciting opportunities for new structures and devices.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QC170 Atomic physics. Constitution and properties of matter ; QC501 Electricity and magnetism