Use this URL to cite or link to this record in EThOS:
Title: Power and spectrally efficient integrated high-speed LED drivers for visible light communication
Author: Venugopalan Nair Jalajakumari, Aravind
ISNI:       0000 0004 7224 9833
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Recent trends in mobile broadband indicates that the available radio frequency (RF) spectrum will not be enough to support the data requirements of the immediate future. Visible light communication, which uses visible spectrum to transmit wirelessly could be a potential solution to the RF ’Spectrum Crunch’. Thus there is growing interest all over the world in this domain with support from both academia and industry. Visible light communication( VLC) systems make use of light emitting diodes (LEDs), which are semiconductor light sources to transmit information. A number of demonstrators at different data capacity and link distances has been reported in this area. One of the key problems holding this technology from taking off is the unavailability of power efficient, miniature LED drive schemes. Reported demonstrators, mostly using either off the shelf components or arbitrary waveform generators (AWGs) to drive the LEDs have only started to address this problem by adopting integrated drivers designed for driving lighting installations for communications. The voltage regulator based drive schemes provide high power efficiency (> 90 %) but it is difficult to realise the fast switching required to achieve the Mbps or Gbps data rates needed for modern wireless communication devices. In this work, we are exploiting CMOS technology to realise an integrated LED driver for VLC. Instead of using conventional drive schemes (digital to analogue converter (DAC) + power amplifier or voltage regulators), we realised a current steering DAC based LED driver operating at high currents and sampling rates whilst maintaining power efficiency. Compared to a commercial AWG or discrete LED driver, circuit realised utilisng complementary metal oxide semiconductor (CMOS) technology has resulted in area reduction (29mm2). We realised for the first time a multi-channel CMOS LED driver capable of operating up to a 500 MHz sample rate at an output current of 255 mA per channel and > 70% power efficiency. We were able to demonstrate the flexibility of the driver by employing it to realise VLC links using micro LEDs and commercial LEDs. Data rates up to 1 Gbps were achieved using this system employing a multiple input, multiple output (MIMO) scheme. We also demonstrated the wavelength division multiplexing ability of the driver using a red/green/blue commercial LED. The first integrated digital to light converter (DLC), where depending on the input code, a proportional number of LEDs are turned ON, realising a data converter in the optical domain, is also an output from this research. In addition, we propose a differential optical drive scheme where two output branches of a current DAC are used to drive two LEDs achieving higher link performance and power efficiency compared to single LED drive.
Supervisor: Henderson, Robert ; Haas, Harald Sponsor: Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: RF Spectrum Crunch ; VLC systems ; LEDs ; CMOS technology ; integrated LED driver ; higher link performance ; power efficiency