Use this URL to cite or link to this record in EThOS:
Title: Oxytocin neurone activity and release following administration of melanotan-II in anaesthetised rats
Author: Paiva, Luis Alberto
ISNI:       0000 0004 7224 9331
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Oxytocin release within the brain modulates several social behaviours in animals and humans. Moreover, low central oxytocin content has been linked to neuropsychiatric disorders, such as anxiety and autism. The exogenous administration of oxytocin has been proposed for therapeutic treatment, but oxytocin does not cross the blood-brain barrier (BBB) in physiologically significant amounts. An alternative approach to oxytocin administration is to stimulate central oxytocin release using melanocortins. Central administration of the naturally occurring melanocortin, α-MSH, has been shown to trigger somatodendritic oxytocin release in vitro. Unfortunately, endogenous melanocortins also do not penetrate the BBB in neuroactive amounts. In this study, I investigated whether systemic administration of synthetic melanocortin receptor 3/4 (MC3/4) agonist, Melanotan-II (MT-II), affects oxytocin neuronal activity and secretion in anaesthetised rats. I hypothesised that systemic administration of MT-II directly (centrally) acts on magnocellular oxytocin neurones to trigger somatodendritic oxytocin release from neurones of the supraoptic nucleus (SON) of the hypothalamus in vivo. Firstly, using double immunohistochemistry against Fos protein, a widely used marker for neural activity, and oxytocin, I showed that intravenous (i.v.; 1 mg/kg), but not intranasal (1 and 30 μg rat), administration of MT-II markedly induced Fos expression in magnocellular oxytocin neurones of the SON and paraventricular nuclei (PVN) of the hypothalamus, and this response was prevented by prior intracerebroventricular (i.c.v.) administration of the melanocortin antagonist, SHU-9119 (1 μg rat). In addition, brain areas receiving peripheral inputs which are involved in the regulation of oxytocin and vasopressin release were also analysed, showing that i.v. MT-II significantly increased Fos expression in the nucleus tractus solitarii (NTS), but not in circumventricular organs of the anteroventral third ventricle (AV3V) region. MT-II-induced Fos in the NTS was not prevented by the i.c.v. melanocortin antagonist. Then, using in vivo electrophysiology, I investigated whether i.v. administration of MT-II affects the electrical activity of SON neurones. Extracellular single-unit recordings from identified magnocellular neurones of the SON showed that MT-II significantly increased the firing rate in oxytocin neurones, however, no significant changes in firing rate were detected in vasopressin neurones. Finally, in vivo oxytocin release experiments showed that i.v. administration of MT-II did not trigger somatodendritic oxytocin release within the SON as measured by microdialysis and subsequent radioimmunoassay. Interestingly, the i.c.v. administration of MT-II (1 μg rat) also failed to trigger oxytocin release within the SON. The analysis of oxytocin content in plasma revealed that the change in oxytocin concentration was significantly greater in i.v. MT-II injected rats compared to vehicle-injected rats. Taken together, these results show that after i.v., but not intranasal, administration of MT-II, the activity of magnocellular neurones of the SON is increased. As previous studies showed that SON oxytocin neurones are inhibited in response to direct application of melanocortin agonists, the actions of i.v. MT-II are likely to be mediated, at least in part, indirectly by activation of inputs from the caudal brainstem.
Supervisor: Ludwig, Mike ; Leng, Gareth Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: oxytocin ; blood-brain barrier ; melanocortins ; melanocortin a-MSH ; Melanotan-II