Use this URL to cite or link to this record in EThOS:
Title: Novel approach to cancer therapeutics using comparative cancer biology
Author: Revi, Bhindu
ISNI:       0000 0004 7224 7803
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Developing personalized cancer therapies based on cancer genomics methodologies forms the basis for future cancer therapeutics. A genomics platform was developed based on canine cancer to produce a proof-of-concept for personalized genomics led therapeutic choices but also developing personalized therapeutics for canine cancer patients themselves. The platform identified the genetic state of a canine cancer patient within two drugable pathways; p53 and HSP90/IRF1. The former gene was wild-type p53 thus directing the use of p53 activating molecules. The latter mutations in both HSP90 and IRF1 suggested an investigation into HSP90 and interferon signalling molecules as drug leads. Drugs that target both of these pathways were subsequently used to measure drug effects in cell line models but also to identify novel biomarkers of drug responses. My study focused on the effect of the HSP90-inhibitor Ganetespib had on its client proteins, particularly IRF-1. Briefly my results indicated the following:(i) Ganetespib downregulated IRF-1 protein levels in A375 cell lines and this attenuation was not mediated by either MDM2 or CHIP (E3 ligase). IFNγ- induced IRF-1 was also observed to be downregulated when Ganetespib was used in combination therapy.(ii) Insitu proximity ligation assay showed induced HSC70 upregulation upon HSP90 inhibition by Ganetespib and HSC70/MDM2 complexes were seen to be stabilized compared to the usage of MDM2/p53 inhibitor-nutlin. I hypothesize that MDM2/HSC70 complex might chaperon IRF-1 into lysosome for degradation via chaperon mediated autophagy pathway. (iii) My results also indicate that Ganetespib can downregulate IFN γ- induced PDL-1 expression in melanoma cell lines. Pre-sensitizing the cells with Ganetespib prior to the addition of IFNγ could attenuate PDL-1 to basal levels. (iv) My results also showed that the downregulation of PDL-1 by Ganetespib is an IRF-1 dependent mechanism. Therefore, my results suggest that HSP90 represents an important emerging target for cancer therapy because its inactivation results in the simultaneous blockade of multiple signalling pathways and can also sensitize tumor cells to other anticancer agents. Targeting HSP90 could also help to disrupt PD1/PDL- 1 interaction and activate immune system to recognise tumor cells. I conclude that HSP90 and IRF-1 play a critical role in types II interferon pathways and these findings establish a novel basis for the design of future Ganetespib-based combinatorial approaches to improve patient outcomes in this disease. These approaches finally demonstrate that cancer genomics can stratify choice of cancer drugs used on patients but also provide evidence that cancer patient samples can be used for the specific stratification of cancer drug choice based on cancer genomics data.
Supervisor: Ball, Kathryn ; Argyle, David Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: melanoma ; HSP90 ; Ganetespib ; PDL-1 ; personalized cancer therapies ; genomics platform ; protein levels