Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.738866
Title: Intention prediction for interactive navigation in distributed robotic systems
Author: Bordallo Micó, Alejandro
ISNI:       0000 0004 7224 2850
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Modern applications of mobile robots require them to have the ability to safely and effectively navigate in human environments. New challenges arise when these robots must plan their motion in a human-aware fashion. Current methods addressing this problem have focused mainly on the activity forecasting aspect, aiming at improving predictions without considering the active nature of the interaction, i.e. the robot’s effect on the environment and consequent issues such as reciprocity. Furthermore, many methods rely on computationally expensive offline training of predictive models that may not be well suited to rapidly evolving dynamic environments. This thesis presents a novel approach for enabling autonomous robots to navigate socially in environments with humans. Following formulations of the inverse planning problem, agents reason about the intentions of other agents and make predictions about their future interactive motion. A technique is proposed to implement counterfactual reasoning over a parametrised set of light-weight reciprocal motion models, thus making it more tractable to maintain beliefs over the future trajectories of other agents towards plausible goals. The speed of inference and the effectiveness of the algorithms is demonstrated via physical robot experiments, where computationally constrained robots navigate amongst humans in a distributed multi-sensor setup, able to infer other agents’ intentions as fast as 100ms after the first observation. While intention inference is a key aspect of successful human-robot interaction, executing any task requires planning that takes into account the predicted goals and trajectories of other agents, e.g., pedestrians. It is well known that robots demonstrate unwanted behaviours, such as freezing or becoming sluggishly responsive, when placed in dynamic and cluttered environments, due to the way in which safety margins according to simple heuristics end up covering the entire feasible space of motion. The presented approach makes more refined predictions about future movement, which enables robots to find collision-free paths quickly and efficiently. This thesis describes a novel technique for generating "interactive costmaps", a representation of the planner’s costs and rewards across time and space, providing an autonomous robot with the information required to navigate socially given the estimate of other agents’ intentions. This multi-layered costmap deters the robot from obstructing while encouraging social navigation respectful of other agents’ activity. Results show that this approach minimises collisions and near-collisions, minimises travel times for agents, and importantly offers the same computational cost as the most common costmap alternatives for navigation. A key part of the practical deployment of such technologies is their ease of implementation and configuration. Since every use case and environment is different and distinct, the presented methods use online adaptation to learn parameters of the navigating agents during runtime. Furthermore, this thesis includes a novel technique for allocating tasks in distributed robotics systems, where a tool is provided to maximise the performance on any distributed setup by automatic parameter tuning. All of these methods are implemented in ROS and distributed as open-source. The ultimate aim is to provide an accessible and efficient framework that may be seamlessly deployed on modern robots, enabling widespread use of intention prediction for interactive navigation in distributed robotic systems.
Supervisor: Ramamoorthy, Subramanian ; Santhanam, Rahul Sponsor: Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.738866  DOI: Not available
Keywords: autonomous robots ; autonomous robot navigation ; prediction algorithms ; probabilistic estimates ; models of motion ; interactivity ; interactive cost-map
Share: