Title:

Calculation of webs in nonAbelian gauge theories using unitarity cuts

When calculating scattering processes in theories involving massless gauge bosons, such as gluons in Quantum Chromodynamics (QCD), one encounters infrared (IR), or soft, divergences. To obtain precise predictions, it is important to have exact expressions for these IR divergences, which are present in any onshell scattering amplitude. Due to their long wavelength, soft gluons factorise with respect to shortdistance, or hard, interactions and can be captured by correlators of semiinfinite Wilson lines. The latter obey a renormalisation group equation, which gives rise to exponentiation. The exponent can be represented diagrammatically in terms of weighted sums of Feynman diagrams, called webs. A web with L external legs, each with ni gluon attachments, is denoted (n1; n2; : : : ; nL). In this way all soft gluon interactions can be described by a soft anomalous dimension. It is currently known at three loops with lightlike kinematics, and at two loops with general kinematics. Our work is a step towards a threeloop result in general kinematics. In recent years, much progress has been made in understanding the general physical properties of scattering amplitudes and in exploiting these properties to calculate specific amplitudes. At the same time, we have discovered a lot of structure underpinning the space of multiple polylogarithms, the functions in terms of which most known amplitudes can be written. General properties include analyticity, implying that scattering amplitudes are analytic functions except on certain branch cuts, and unitarity, or conservation of probability. These two properties are both exploited by unitarity cuts. Unitarity cuts provide a diagrammatic way of calculating the discontinuities of a Feynman diagram across its branch cuts, which is often simpler than calculating the diagram itself. From this discontinuity, the original function can be reconstructed by performing a dispersive integral. In this work, we extend the formalism of unitarity cuts to incorporate diagrams involving Wilsonline propagators, where the inverse propagator is linear in the loop momenta, rather than the quadratic case which has been studied before. To exploit this for the calculation of the soft anomalous dimension, we first found a suitable momentumspace IR regulator and corresponding prescription, and then derived the appropriate largest time equation (LTE). We find that, as in the case of the scalar diagrams, most terms contributing to the LTE turn out to be zero, albeit for different reasons. This simplifies calculations considerably. This formalism is then applied to the calculation of webs with nonlightlike Wilson lines. As a test, we first looked at webs that have been previously studied using other methods. It emerges that, when using the correct variables, the dispersive integrals one encounters here are trivial, illustrating why unitarity cuts are a particularly useful tool for the calculation of webs. We observe that our technique is especially efficient when looking at diagrams involving threegluon vertices, such as the (1; 1; 1) web and the Y diagram between two lines. We then focus on threeloop diagrams connecting three or four external nonlightlike lines and involving a threegluon vertex. We calculate the previously unknown threeloop threeleg (1; 1; 3) web in general kinematics. We obtain a result which agrees with the recently calculated lightlike limit. We also develop a technique to test our results numerically using the computer program SecDec, and we find agreement with our analytical result. The result for the (1; 1; 3) web can then be exploited to gain insight into the more complicated threeloop fourleg (1; 1; 1; 2) web. Indeed, the (1; 1; 1; 2) web reduces to the (1; 1; 3) web in a certain collinear limit. We propose an ansatz for the (1; 1; 1; 2) web in general kinematics, based on a conjectured basis of multiple polylogarithms. The result for the (1; 1; 3) web, together with the known result for the lightlike limit of the (1; 1; 1; 2) web, imposes strong constraints on the ansatz. Using these constraints, we manage to fix all but four coefficients in the ansatz. We fit the remaining coefficients numerically, but find that the quality of the fit is not good. We find possible explanations for this poor quality. This calculation is still a work in progress. Our results provide a major step towards the full calculation of the threeloop soft anomalous dimension for nonlightlike Wilson lines. We calculated new results for threeloop webs, and also deepened the understanding of webs in general. We confirm a conjecture about the functional dependence of the soft anomalous dimension on the cusp angles. We also confirm earlier findings about the symbol alphabet of the relevant functions. This confirms the remarkable simplicity found earlier in the expressions for the soft anomalous dimension.
