Use this URL to cite or link to this record in EThOS:
Title: Iron-catalysed hydride and radical transfer reactions
Author: Zhu, Kailong
ISNI:       0000 0004 7232 029X
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 31 Dec 2100
Access from Institution:
Iron-catalysed carbonyl reduction, nitro reduction, formal hydroamination, and the radical alkenylation of alkyl halides have been developed. A Simple, easy-to-make, air- and moisture-stable iron(III) amine-bis(phenolate) complex catalysed the hydrosilylation of carbonyl compounds efficiently using triethoxysilane as the reducing agent. The reaction tolerated a wide range of substrates to give the corresponding alcohol products in good to excellent yields after hydrolysis of the hydrosilylated products (Scheme A1). Scheme A1. Iron-Catalysed Hydrosilylation of Carbonyl Compounds. The same catalyst was also an active catalyst for the chemoselective reduction of nitro arenes into corresponding amines using triethoxysilane as reducing agent. The method exhibited excellent chemoselectivity as other reducible functional groups such as halogen, ester, nitrile all kept unchanged during the reaction. This catalytic system was then successfully applied to the formal hydroamination of alkene to give substituted amine in synthetic useful yields under mild condition. The reaction is hypothesised to proceed through a radical intermediate (Scheme A2). Scheme A2. Iron-Catalysed Nitro Reduction and Alkene Formal Hydroamination. Finally, FeCl2-catalysed formal Heck cross-coupling has been developed between alkyl halides and styrenes. The reaction tolerated both electron-rich and electron-neutral substrates to give the products in moderate to excellent yields. Initial studies revealed that the reaction also proceeds through a radical intermediate (Scheme A3). Scheme A3. Iron-Catalysed Formal Heck Cross-Coupling of Functionalised Alkyl Halides.
Supervisor: Shaver, Michael ; Thomas, Stephen ; Love, Jason Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: iron catalysis ; carbonyl ; nitro compounds ; hydrosilylation ; radical