Use this URL to cite or link to this record in EThOS:
Title: A study of flow behaviour of dense phase at low concentrations in pipes
Author: Koguna, Aminu Ja'Afar Abubakar
ISNI:       0000 0004 7231 333X
Awarding Body: Cranfield University
Current Institution: Cranfield University
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Access from Institution:
Offshore production fluids from the reservoir are often transported in pipelines from the wellheads to the platform and from the platform to process facilities. At low flow velocity water, sand or liquids like condensate could settle at the bottom of pipelines that may lead to grave implications for flow assurance. During shutdown the settled heavy liquid (e.g. water), could result in corrosion in pipelines, while following restart stages the settled water could form water plugs that could damage equipment, while settled sand could also form a blockage that needs to be purged. Furthermore, there is a requirement to know the quantity of water and base sediment for fiscal metering and custody transfer purposes. A series of experiments were carried out to observe low water cut in oil and water flows in four inch diameter pipeline. Similarly low sand concentrations in water and sand, water, air and sand flows were observed in two inch diameter pipelines. Conductive film thickness sensors were used to ascertain structural velocities, height and dense phase fractions. Comparisons are made between two cases in order to gain better understanding of the behaviours and dispersal process of low loading denser phase in multiphase flows. The arrangement enabled production of flow regime maps for low water cut oil and water flow, as well as water sand and water, air and sand flows, structural velocities and denser phase removal velocities were also ascertained. Actual in-situ liquid velocities were obtained experimentally. A novel detection of sand in water and water and sand flows was produced. The experimentally obtained film thickness was in agreement with two fluid model predictions. Thus, confirming use of conductive sensors for dense phase classification, film thickness, velocity and holdup measurements in pipelines.
Supervisor: Yeung, Hoi Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Water/oil flow ; Solid/liquid flow ; Low water cut ; Interface height ; Low sand loading ; Velocity