Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.737962
Title: Reducing internet latency for thin-stream applications over reliable transport with active queue management
Author: Grigorescu, Eduard
ISNI:       0000 0004 7226 1066
Awarding Body: University of Aberdeen
Current Institution: University of Aberdeen
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
An increasing number of network applications use reliable transport protocols. Applications with constant data transmission recover from loss without major performance disruption, however, applications that send data sporadically, in small packets, also called thin-streams, experience frequently high latencies due to 'Bufferbloat', that reduce the application performance. Active Queue Management mechanisms were proposed to dynamically manage the queues in routers by dropping packets early and reduce these, hence reducing latency. While their deployment to the internet remains an open issue, the proper investigation into how their functioning mechanism impacts latency is the main focus of this work and research questions have been devised to investigate the AQM impact on latency. A range of AQM mechanisms has been evaluated by the research, exploring performance of the methods for latency sensitive network applications. This has explored new single queue AQM mechanisms such as Controlled Delay (CODEL) and Proportional Integral Enhanced (PIE) and Adaptive RED (ARED). The evaluation has shown great improvements in queuing latency when AQM are used over a range of network scenarios. Scheduling AQM algorithms such as FlowQueue CODEL (FQ-CODEL) isolates traffic and minimises the impact of Bufferbloat on flows. The core components of FQ-CODEL, still widely misunderstood at the time of its inception, have been explained in depth by this study and their contribution to reducing latency have been evaluated. The results show significant reductions in queuing latency for thin streams using FQ-CODEL. When TCP is used for thin streams, high application latencies can arise when there are retransmissions, for example after dropping packets by an AQM mechanism. This delay is a result of TCP's loss-based congestion control mechanism that controls sender transmission rate following packet loss. ECN, a marking sender-side improvement to TCP reduces applicationlayer latency without disrupting the overall network performance. The thesis evaluated the benefit of using ECN using a wide range of experiments. The findings show that FQ-CODEL with ECN provides a substantial reduction of application latency compared to a drop-based AQM. Moreover, this study recommends the combination of FQ-CODEL with other mechanisms, to reduce application latency. Mechanisms such as ABE, have been shown to increase aggregate throughput and reduce application latency for thin-stream applications.
Supervisor: Not available Sponsor: RCUK Digital Economy Programme ; Seventh Framework Programme (European Commission)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.737962  DOI: Not available
Keywords: Flow control (Data transmission systems) ; Queuing networks (Data transmission) ; Buffer storage (Computer science) ; TCP/IP (Computer network protocol)
Share: