Use this URL to cite or link to this record in EThOS:
Title: Quantum theory of the Penning trap : an exploration of the low temperature regime
Author: Crimin, Frances
ISNI:       0000 0004 7223 7349
Awarding Body: University of Sussex
Current Institution: University of Sussex
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
The objective of this thesis is to develop the quantum theory of the motional degrees of freedom of a charged particle in a Penning trap. The theory is treated within the formalism of quantum optics, and explores the use of dressed-atom methods by exploiting the threefold SU(N) algebraic structure of the problem. The quantum form of the experimental techniques of sideband coupling and driving to the ultra-elliptical regime are examined in this context, and resulting future applications considered. Interpretation of the quantum dynamics of the separate x and y motions of an electron is discussed, motivated by the desire to modify the trapping potential without changing the basic experimental configuration. A detailed discussion of operator methods which exploit the algebraic structure of the problem is given. This results in a clearer understanding of the physical manifestations of a range of unitary transformations upon a general three-dimensional system, and a novel interpretation of the mapping between canonical angular momentum components of isotropic and anisotropic trapping systems. The results highly promote future use of these methods in Penning trap theory, detailing a robust formulation of unitary operations which can be used to prepare the quantum state of a charged particle. The majority of the results can be applied to any Penning trap, but the theory is based throughout upon the “Geonium Chip" trap at Sussex; the scalability and planar design of this trap promotes it as natural candidate in experimental quantum optics and Gaussian quantum information studies. The work in this thesis aims to provide framework for such future applications.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QC0446.2 Nonlinear optics. Quantum optics