Use this URL to cite or link to this record in EThOS:
Title: A new strategy for case-based reasoning retrieval using classification based on association
Author: Aljuboori, A. S.
ISNI:       0000 0004 6500 0378
Awarding Body: University of Salford
Current Institution: University of Salford
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
Cased Based Reasoning (CBR) is an important area of research in the field of Artificial Intelli-gence. It aims to solve new problems by adapting solutions, that were used to solve previous similar ones. Among the four typical phases - retrieval, reuse, revise and retain, retrieval is a key phase in CBR approach, as the retrieval of wrong cases can lead to wrong decisions. To ac-complish the retrieval process, a CBR system exploits Similarity-Based Retrieval (SBR). How-ever, SBR tends to depend strongly on similarity knowledge, ignoring other forms of knowledge, that can further improve retrieval performance. The aim of this study is to integrate class association rules (CARs) as a special case of associa-tion rules (ARs), to discover a set (of rules) that can form an accurate classifier in a database. It is an efficient method when used to build a classifier, where the target is pre-determined. The proposition for this research is to answer the question of whether CARs can be integrated into a CBR system. A new strategy is proposed that suggests and uses mining class association rules from previous cases, which could strengthen similarity based retrieval (SBR). The propo-sition question can be answered by adapting the pattern of CARs, to be compared with the end of the Retrieval phase. Previous experiments and their results to date, show a link between CARs and CBR cases. This link has been developed to achieve the aim and objectives. A novel strategy, Case-Based Reasoning using Association Rules (CBRAR) is proposed to improve the performance of the SBR and to disambiguate wrongly retrieved cases in CBR. CBRAR uses CARs to generate an optimum frequent pattern tree (FP-tree) which holds a val-ue of each node. The possible advantage offered is that more efficient results can be gained, when SBR returns uncertain answers. In addition, CBRAR has been evaluated using two sources of CBR frameworks - Jcolibri and Free CBR. With the experimental evaluation on real datasets indicating that the proposed CBRAR is a better approach when compared to CBR systems, offering higher accuracy and lower error rate.
Supervisor: Not available Sponsor: University of Baghdad
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available