Use this URL to cite or link to this record in EThOS:
Title: Proteases and inhibitors in the interaction between Nicotiana benthamiana and Agrobacterium tumefaciens : systematic analysis and emerging solutions for molecular farming
Author: Grosse-Holz, Friederike
ISNI:       0000 0004 6500 9583
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
Nicotiana benthamiana is now an established platform for molecular farming, the production of biopharmaceuticals in plants. Infiltration with Agrobacterium tumefaciens (agroinfiltration) is commonly used to transiently express one or multiple transgenes in N. benthamiana leaves. Agroinfiltrated N. benthamiana is a flexible and scalable recombinant protein (RP) production platform, but is impeded by low RP yields. Plant proteases can degrade RPs and thus limit RP accumulation. To inform, design and implement strategies for enhancing RP accumulation, I present four papers about proteases and protease inhibitors in agroinfiltrated N. benthamiana. First, I investigated the transcriptome, extracellular proteome and active secretome to understand the plant response to agroinfiltration and investigate the expressed proteases. I show that an extracellular immune response is mounted at the expense of photosynthesis. Comprehensive annotation and monitoring uncover a large, diverse repertoire of proteases in agroinfiltrated leaves, indicating that broad-range depletion of protease activity may be required to enhance RP accumulation. Second, I reviewed the literature on multifunctional plant protease inhibitors (PIs) and grouped them into three types of multifunctional PIs that evolved independently. Third, I screened candidate PIs and discovered that three new, unrelated PIs enhance RP accumulation. I present universal elements of the RP degradation machinery, uncovering new questions on our understanding of the protease network that degrades RPs. Fourth, I identified targets of SlCYS8, a PI that enhances RP accumulation. The target proteases of SlCYS8 are implicated in RP degradation and the high specificity of SlCYS8 can be used to study their role in other processes. By elucidating the immune response to agroinfiltration, by uncovering the N. benthamiana protease repertoire and by providing new tools to deplete the activity of specific proteases, this thesis makes a relevant contribution to both basic plant research and molecular farming.
Supervisor: Kelly, Steven ; vand der Hoorn, Renier Sponsor: European Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Biotechnology ; Plant Science ; Biology ; RNAseq ; proteomics ; recombinant protein ; SlCYS8