Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.736032
Title: A study of temporal and spatial evolution of deformation and breakage of dry granular materials using x-ray computed tomography and the discrete element method
Author: Karatza, Zeynep
ISNI:       0000 0004 6500 9313
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2018
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
Particles exist in great abundance in nature, such as in sands and clays, and they also constitute 75% of the materials used in industry (e.g., mineral ores, formulated pharmaceuticals, dyes, detergent powders). When a load is applied to a bulk assembly of soil particles, the response of a geomaterial at the bulk (macro) scale, originates from the changes that take place at the particle scale. If particle breakage occurs, the shape and size of the particles comprising the bulk are changed; this induces changes in the contact network through which applied loads are transmitted. As a result, changes at the micro-scale can significantly affect the mechanical behaviour of a geomaterial at a macro-scale. It is therefore unsurprising that the mechanisms leading to particle breakage are a subject of intense research interest in several fields, including geomechanics. In this thesis, particle breakage of two dry granular materials is studied, both experimentally and numerically. The response of the materials is investigated under different stress paths and in all the tests grain breakage occurs. High resolution x-ray computed micro-tomography (XCT) is used to obtain 3D images of entire specimens during high confinement triaxial compression tests and strain controlled oedometric compression tests. The acquired images are processed and measurements are made of the temporal and spatial evolution of breakage, local variations of porosity, volumetric and shear strain and grading. The evolution and spatial distribution of quantified breakage including the resulting particle size distribution for the whole specimen and for specific areas, are presented and further related to the localised shear and volumetric strains that developed in the specimens. In addition, the discrete element method (DEM) was used to provide further micro-mechanical insight of the underlying mechanisms leading to particle breakage. Classical DEM simulations, using a Hertz-Mindlin contact model and non-breakable spheres, was first deployed to study the initiation and likelihood of particle breakage under oedometric compression. Moreover, a bonded DEM model was used to create clumps that represent each particle and simulate breakage of particles under single particle compression. The DEM model parameters were obtained from results of single particle compression test and the models were validated against the quantitative 3D information of the micro-scale, acquired from the XCT analysis.
Supervisor: Ooi, Jin ; Papanicolopulos, Stefanos Sponsor: Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.736032  DOI: Not available
Keywords: particle breakage ; x-ray tomography ; triaxial compression ; oedometric compression ; DEM ; image processing ; deformation
Share: