Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.735946
Title: Structural insights into innate immunity against African trypanosomes
Author: Lane-Serff, Harriet
ISNI:       0000 0004 6500 7721
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
The haptoglobin-haemoglobin receptor (HpHbR) is expressed by the African try- panosome, T. brucei, whilst in the bloodstream of the mammalian host. This allows ac- quisition of haem, but also results in uptake of trypanolytic factor 1, a mediator of in- nate immunity against non-human African trypanosomes. Here, the structure of HpHbR in complex with its ligand, haptoglobin-haemoglobin (HpHb), is presented, revealing an elongated binding site along the membrane-distal half of the receptor. A ~50° kink allows the simultaneous binding of two receptors to one dimeric HpHb, increasing the efficiency of ligand uptake whilst also increasing binding site exposure within the densely packed cell surface. The possibility of targeting this receptor with antibody-drug conjugates is ex- plored. The characterisation of the unexpected interaction between T. congolense HpHbR and its previously unknown ligand, haemoglobin, is also presented. This receptor is iden- tified as an epimastigote-specific protein expressed whilst the trypanosome occupies the mouthparts of the tsetse fly vector. An evolutionary pathway of the receptor is proposed, describing how the receptor has changed to adapt to a role as a bloodstream form-specific protein in T. brucei. Apolipoprotein L1 (ApoL1) is the pore-forming component of the trypanolytic factors. An expression and purification protocol for ApoL1 is presented here, and the functionality of the protein established. Initial attempts to characterise the pores and structure of ApoL1 are described.
Supervisor: Higgins, Matthew Sponsor: Wellcome Trust
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.735946  DOI: Not available
Keywords: Human African Trypanosomiasis ; Sleeping sickness ; Strucutral biology
Share: