Use this URL to cite or link to this record in EThOS:
Title: Molecular identity of activity-dependent bulk endocytosis
Author: Kokotos, Alexandros Christoforos
ISNI:       0000 0004 6500 3595
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 31 Dec 2100
Access from Institution:
At the neuronal synapse, neurotransmitter-filled synaptic vesicles (SVs) fuse with the presynaptic plasma membrane during activity. Following exocytosis, SVs must be retrieved for neurotransmission to be maintained. Several modes of SV recycling have been identified. During mild neuronal activity, clathrin-mediated endocytosis has been regarded as the dominant SV retrieval mode, however the recently identified ultrafast endocytosis mode may also be important in this condition. During elevated activity, activity-dependent bulk endocytosis (ADBE) is the dominant SV retrieval pathway. In ADBE, large invaginations are formed from the plasma membrane, which then undergo scission to create bulk endosomes. In a second distinct step, SVs bud from these endosomes and specifically repopulate the reserve SV pool. However, since its first identification, only few molecules have been shown to participate in ADBE. The aim of this PhD was to identify novel molecules and elucidate the molecular mechanism of ADBE. To achieve this, two independent biochemical approaches were designed to purify and enrich bulk endosomes from primary neuronal cultures. In the first approach, bulk endosomes and SVs were labelled with a dye, FM1-43, using a strong stimulus. Cells were broken mechanically and the post nuclear supernatant, that contains all intracellular organelles, was collected. The supernatant was then subjected to subcellular fractionation using discontinuous Nycodenz gradients. This stimulated sample was always processed in parallel with a basal sample, where no neuronal stimulus was applied, in order to visualise activity dependent FM loading. After different fractionation protocols were applied, bulk endosomes were efficiently separated from SVs, as revealed by tracking fluorescence in different fractions. The fractionation results were further validated by electron microscopy, where bulk endosomes and SVs were labelled with horseradish peroxidase and purified using the established protocol. Immunoblotting against selected SV cargo proteins from stimulated bulk endosome and SV samples, indicated the specific and preferential localisation of VAMP4 on bulk endosomes, in contrast to other SV cargo. The molecular identity of bulk endosomes was also approached by submitting the bulk endosome fractions to semi-quantitative mass spectrometry. This analysis revealed many different proteins that were identified in bulk endosome samples and quantification approaches further indicated proteins that can be localised on bulk endosomes and have a potential role in ADBE. A second magnetic isolation approach was designed, to purify bulk endosomes using a completely different methodology. In this case, bulk endosomes were specifically labelled with iron nanoparticles, which are preferentially taken up by bulk endosomes since they are larger than SVs. The cells were broken as before and post nuclear supernatant was acquired. In this case, the supernatant was submitted to magnetic isolation that separated iron beads labelled structures from all other intracellular organelles. An extensive immunoblotting analysis of magnetic bulk endosomes validated that VAMP4 and syndapin I, two essential ADBE proteins, were enriched in these purified samples. These magnetic bulk endosomes were also analysed using semi-quantitative MS and revealed many proteins with a potential role in ADBE. Significant overlap between the two independent methods was observed, further validating these approaches. Combining these two methods with bioinformatics tools allowed the identification of the molecular signature of ADBE as well as novel key candidates for this process. Specific molecules were investigated for their role in ADBE and SV recycling using a variety of different real-time fluorescent imaging assays. A major focus was on rab small GTPases. High molecular weight dextran uptake was used to specifically study the role of these proteins in ADBE, as it preferentially reports uptake via larger bulk endosomes. A pH sensitive chimeric protein, synaptophysin-pHluorin, was used to investigate the role of these proteins in CME. Additional imaging assays were used to answer emerging questions regarding the function and localisation of these targets in the presynapse. Using these approaches, rab11A and rab35 were found to promote ADBE and accelerate clathrin-mediated endocytosis. This effect was specific to high intensity stimulation, while SV exocytosis was not affected. Further research on the role of both novel and established ADBE molecules will provide key future insights into the mechanism of both bulk endosome generation/scission and subsequent SV reformation. A very promising group is rab proteins and now evidence for their implication in SV recycling is presented here. Identification and characterisation of new targets will allow to investigate the role of ADBE in neurotransmission in both physiology and pathophysiology.
Supervisor: Cousin, Mike ; Maciver, Sutherland Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: synaptic vesicles ; neurotransmitters ; Activity-Dependent Bulk Endocytosis ; ADBE ; bulk endosomes ; GTPases ; SV endocytosis