Use this URL to cite or link to this record in EThOS:
Title: The optimisation and characterisation of durable microelectrodes for electroanalysis in molten salt
Author: Blair, Ewen O.
ISNI:       0000 0004 6500 3587
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
This work presents microfabricated microelectrodes, capable of quantitative analysis in molten salt (MS). MSs are an electrolytic medium of growing interest, especially in the area of nuclear reprocessing. However, designing sensors for a MS-based nuclear reprocessing system is a challenge, owing to the usually corrosive nature and high operating temperatures (typically 450 - 500◦C) of MS. Microelectrodes are well placed as sensors, with numerous advantages over macro-scale electrodes. As a consequence, there have been previous attempts to utilise microelectrodes inMS. However, these have not been successful and all have suffered disadvantages inherent in traditional microelectrode manufacturing. The microelectrodes presented in this work were produced using standard microfabrication techniques and characterised in MS. An analysis of failure mechanisms guided a systematic study of material combinations. This resulted in a sensor, which is capable of delivering quantifiable electrochemistry in MS. However, the lifetime and yield of the sensor were determined to only be 46% and 1.4 hours respectively. Further investigation of the microelectrode failure mechanisms guided several layout changes to the microelectrode design. By reducing critical area, where defects or pinholes could form, these resulted in improvements in performance. This increased the yield to 65%, while the average lifetime increased up to 45 hours. Test structures were designed to investigate the causes of the continued microelectrode failures and identified shorting between the electrode metal and silicon substrate. This suggests the existence of defects in the underlying insulator are the cause of the 35% of microelectrodes which never functioned. Separate test structures suggested the lifetimes of the microelectrodes could also be improved by removing the need for a metal adhesion layer. Tantalum has been suggested as a replacement electrode metal and a proof of concept study demonstrated the feasibility of employing thin film tantalum as an electrode metal in LKE. Using this technology as a platform, several proof-of-concept microelectrode designs are also presented: liquid microelectrodes, microelectrode arrays, and a nanoelectrode. These are targeted at specific sensing applications, and provide an expanded spectrum of measurements in MS.
Supervisor: Walton, Anthony ; Haworth, Les Sponsor: Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: microfabricated microelectrodes ; molten salt ; microelectrode design ; tantalum ; LKE