Use this URL to cite or link to this record in EThOS:
Title: Kinetic control through oxidative locking in metallosupramolecular self-assembly
Author: Burke, Michael John
ISNI:       0000 0004 6500 2904
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 31 Dec 2100
Access from Institution:
Metallosupramolecular self-assembly has fast expanded as a field due to the possibility for relatively facile construction of large assemblies through reversible non-covalent interactions, compared to their more synthetically challenging covalent counterparts. Not least, it provides a fast and often quantitative route to the construction of three-dimensional structures with a cavity. These internal spaces have been shown to be effective for a variety of applications, including but not limited to catalysis, drug delivery, use as a noncovalent protecting group, a separations material etc. Thermodynamic processes, with the inherent advantages of atom efficient, high-yielding reactions, usually control these systems. However this can also be a double-edged sword, with these systems susceptible to changes to specific ambient conditions, and are thus often not kinetically stable. Herein, we report the expansion of a method utilising the one electron oxidation of high spin d7 cobalt(II) to low spin d6 cobalt(III) as a molecular locking mechanism as part of the assembly process. This allows for the formation of species under thermodynamic control in the CoII manifold, with the kinetic stability of these assemblies in the oxidised CoIII and has been used to synthesise a variety of tetrahedra and helicates with a series of bis-bidentate N,N’-chelate ligands, which have shown to be stable away from their thermodynamically preferred conditions for long periods of time. These containers can be made both water and organic soluble via counteranion exchange, and a series of guests have been shown to bind in the tetrahedral species. Alongside on going biological viability tests, these guests show promise for a variety of applications including fluorescent tagging and radio-diagnostic agents. Novel switching methods have also been demonstrated for transformations between these species going both energetically down and up hill.
Supervisor: Lusby, Paul ; Schneider, Uwe Sponsor: Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: metallosupramolecular self-assembly ; electron oxidation ; molecular locking mechanisms