Use this URL to cite or link to this record in EThOS:
Title: Contaminant issues in production and application of biochar
Author: Buss, Wolfram
ISNI:       0000 0004 6500 2031
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
For widespread use of biochar in agriculture and horticulture, it must be ensured that application will neither adversely affect soil and plants, nor exceed legislated contaminant concentrations. The most relevant groups of contaminants in biochar are potentially toxic elements (PTEs), polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOC). In this thesis, the concentrations of these groups of contaminants were analysed in 90 different biochars produced by slow pyrolysis. Subsequently, the concentrations were compared to legislation/guideline threshold values and linked to production conditions. The risk these contaminants pose to plant growth was also assessed, to give recommendations on production of safe biochar. PTEs can neither be formed nor destroyed, which means their presence in biochar is predominantly determined by feedstock type. However, significant levels of Cr, Fe and Ni were introduced into biochar from the furnace steel, whilst PTEs with low boiling points, such as As, Cd and Zn, partially evaporated during pyrolysis. PTEs were not responsible for phytotoxic effects observed for PTE-rich biochars despite biochar’s exceedance of available and total PTE threshold values for soil and soil amendments. Although initial tests were promising, the risk that PTE-rich biochars as amendment for soil and growing media pose, needs further investigation. The PAH concentration in biochar was markedly reduced by increasing carrier gas flow rate, and the type of feedstock also influenced the PAH content. However, there was no clear dependence of pyrolysis temperature on PAH concentrations, which was attributed to PAHs being increasingly formed and evaporated at higher pyrolysis temperatures. Ultimately, condensation of pyrolysis vapours and deposition on biochar was identified as the main risk for biochar contamination with PAHs, as this resulted in elevated concentrations of high-risk, higher molecular weight PAHs. Weaknesses in the pyrolysis unit design, such as cold zones, resulted in elevated concentrations of VOCs, as well as PAHs, in biochar. Comparing concentrations and phytotoxic potential of both compound groups, it was concluded that observed toxic effects were much more likely caused by VOCs in biochars containing both contaminants. Overall, formation of VOCs and PAHs cannot be prevented, but their presence in biochar resulting from retention and deposition can be minimised.
Supervisor: Masek, Ondrej ; Graham, Margaret Sponsor: Natural Environment Research Council (NERC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: biochar ; pyrolysis ; potentially toxic elements ; PTE ; nutrients ; volatile organic compounds ; VOC ; polycyclic aromatic hydrocarbons ; PAH