Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.735647
Title: Investigation of the cell- and non-cell autonomous impact of the C9orf72 mutation on human induced pluripotent stem cell-derived astrocytes
Author: Zhao, Chen
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 31 Dec 2100
Access from Institution:
Abstract:
Amyotrophic lateral sclerosis (ALS) is a late onset neurodegenerative disorder characterised by selective loss of upper and lower motor neurons (MNs). Recently, the GGGGCC (G4C2) hexanucleotide repeat expansion in chromosome 9 open reading frame 72 (C9orf72) has been identified as the most common genetic cause of ALS, highlighting the importance of studying the pathogenic mechanisms underlying this mutation. Accumulating evidence implicates that ALS is a multisystem and multifactor disease. Specifically, non-neuronal cells, astrocytes in particular, are also affected by toxicity mediated by ALS-related mutations, and they can contribute to neurodegeneration, suggesting astrocytes as a key player in ALS pathogenesis. Here, a human induced pluripotent stem cells (iPSCs)-based in vitro model of ALS was established to investigate the impact of the C9orf72 mutation on astrocyte behaviour—both cell- and non-cell autonomous. Work in this study shows that patient iPSC-derived astrocytes recapitulate key pathological features associated with C9orf72-mediated ALS, such as formation of G4C2 repeat RNA foci, production of dipeptide repeat (DPR) proteins and reduced viability under basal conditions compared to controls. Moreover, C9orf72 mutant astrocytes in co-culture result in reduced viability and structural defects of human MNs. Importantly, correction of the G4C2 repeat expansion in mutant astrocytes through targeted gene editing reverses these phenotypes, strongly confirming that the C9orf72 mutation is responsible for the observed findings. Altogether, this iPSC-based in vitro model provides a valuable platform to gain better understandings of ALS pathophysiology and can be used for future exploration of potential therapeutic drugs.
Supervisor: Chandran, Siddharthan ; Grant, Seth Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.735647  DOI: Not available
Keywords: ALS ; amyotrophic lateral sclerosis ; astrocytes ; human induced pluripotent stem cells ; iPSCs
Share: