Use this URL to cite or link to this record in EThOS:
Title: Modelling loss given default of corporate bonds and bank loans
Author: Yao, Xiao
ISNI:       0000 0004 6499 6097
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Loss given default (LGD) modelling has become increasingly important for banks as they are required to comply with the Basel Accords for their internal computations of economic capital. Banks and financial institutions are encouraged to develop separate models for different types of products. In this thesis we apply and improve several new algorithms including support vector machine (SVM) techniques and mixed effects models to predict LGD for both corporate bonds and retail loans. SVM techniques are known to be powerful for classification problems and have been successfully applied to credit scoring and rating business. We improve the support vector regression models by modifying the SVR model to account for heterogeneity of bond seniorities to increase the predictive accuracy of LGD. We find the proposed improved versions of support vector regression techniques outperform other methods significantly at the aggregated level, and the support vector regression methods demonstrate significantly better predictive abilities compared with the other statistical models at the segmented level. To further investigate the impacts of unobservable firm heterogeneity on modelling recovery rates of corporate bonds a mixed effects model is considered, and we find that an obligor-varying linear factor model presents significant improvements in explaining the variations of recovery rates with a remarkably high intra-class correlation being observed. Our study emphasizes that the inclusion of an obligor-varying random effect term has effectively explained the unobservable firm level information shared by instruments of the same issuer. At last we incorporate the SVM techniques into a two-stage modelling framework to predict recovery rates of credit cards. The two-stage model with a support vector machine classifier is found to be advantageous on an out-of-time sample compared with other methods, suggesting that an SVM model is preferred to a logistic regression at the classification stage. We suggest that the choice of regression models is less influential in prediction of recovery rates than the choice of classification methods in the first step of two-stage models based on the empirical evidence. The risk weighted assets of financial institutions are determined by the estimates of LGD together with PD and EAD. A robust and accurate LGD model impacts banks when making business decisions including setting credit risk strategies and pricing credit products. The regulatory capital determined by the expected and unexpected losses is also important to the financial market stability which should be carefully examined by the regulators. In summary this research highlights the importance of LGD models and provides a new perspective for practitioners and regulators to manage credit risk quantitatively.
Supervisor: Crook, Jonathan ; Andreeva, Galina Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: loss given default ; LGD ; credit risk modelling