Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.732980
Title: Applications of loudness models in audio engineering
Author: Ward, Dominic
ISNI:       0000 0004 6495 1390
Awarding Body: Birmingham City University
Current Institution: Birmingham City University
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
Abstract:
This thesis investigates the application of perceptual models to areas of audio engineering, with a particular focus on music production. The goal was to establish efficient and practical tools for the measurement and control of the perceived loudness of musical sounds. Two types of loudness model were investigated: the single-band model and the multiband excitation pattern (EP) model. The heuristic single-band devices were designed to be simple but sufficiently effective for real-world application, whereas the multiband procedures were developed to give a reasonable account of a large body of psychoacoustic findings according to a functional model of the peripheral hearing system. The research addresses the extent to which current models of loudness generalise to musical instruments, and whether can they be successfully employed in music applications. The domain-specific disparity between the two types of model was first tackled by reducing the computational load of state-of-the-art EP models to allow for fast but low-error auditory signal processing. Two elaborate hearing models were analysed and optimised using musical instruments and speech as test stimuli. It was shown that, after significantly reducing the complexity of both procedures, estimates of global loudness, such as peak loudness, as well as the intermediate auditory representations can be preserved with high accuracy. Based on the optimisations, two real-time applications were developed: a binaural loudness meter and an automatic multitrack mixer. This second system was designed to work independently of the loudness measurement procedure, and therefore supports both linear and nonlinear models. This allowed for a single mixing device to be assessed using different loudness metrics and this was demonstrated by evaluating three configurations through subjective assessment. Unexpectedly, when asked to rate both the overall quality of a mix and the degree to which instruments were equally loud, listeners preferred mixes generated using heuristic single-band models over those produced using a multiband procedure. A series of more systematic listening tests were conducted to further investigate this finding. Subjective loudness matches of musical instruments commonly found in western popular music were collected to evaluate the performance of five published models. The results were in accord with the application-based assessment, namely that current EP procedures do not generalise well when estimating the relative loudness of musical sounds which have marked differences in spectral content. Model specific issues were identified relating to the calculation of spectral loudness summation (SLS) and the method used to determine the global-loudness percept of time-varying musical sounds; associated refinements were proposed. It was shown that a new multiband loudness model with a heuristic loudness transformation yields superior performance over existing methods. This supports the idea that a revised model of SLS is needed, and therefore that modification to this stage in existing psychoacoustic procedures is an essential step towards the goal of achieving real-world deployment.
Supervisor: Athwal, Cham ; Köküer, Münevver ; Reiss, Joshua D. Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.732980  DOI: Not available
Keywords: H600 Electronic and Electrical Engineering ; H900 Others in Engineering
Share: