Use this URL to cite or link to this record in EThOS:
Title: Absolute calibration of radiometric partial discharge sensors for insulation condition monitoring in electrical substations
Author: Jaber, Adel Ali
ISNI:       0000 0004 6494 8343
Awarding Body: University of Huddersfield
Current Institution: University of Huddersfield
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
Measurement of partial discharge (PD) is an important tool in the monitoring of insulation integrity in high voltage (HV) equipment. Partial discharge is measured traditionally using galvanic contact techniques based on IEC 60270 standard or near field coupling [1]. Freespace radiometric (FSR) detection of PD is a relatively new technique. This work advances calibration method for FSR measurements and proposer a methodology for FSR measurement of absolute PD intensity. Until now, it has been believed that absolute measurement of partial discharge intensity using radiometric method is not possible. In this thesis it is demonstrated that such measurement is possible and the first ever such absolute measurements are presented. Partial discharge sources have been specially constructed. These included a floating electrode PD emulator, an acrylic cylinder internal PD emulator and an epoxy dielectric internal PD emulator. Radiated signals are captured using a wideband biconical antenna [1]. Free-space radiometric and galvanic contact measurement techniques are compared. Discharge pulse shape and PD characteristics under high voltage DC and AC conditions are obtained. A comparison shows greater similarity between the two measurements than was expected. It is inferred that the dominant mechanism in shaping the spectrum is the band-limiting effect of the radiating structure rather than band limiting by the receiving antenna. The cumulative energies of PD pulses in both time and frequency domains are also considered [2]. The frequency spectrum is obtained by FFT analysis of time-domain pulses. The relative spectral densities in the frequency bands 50 MHz – 290 MHz, 290 MHz – 470 MHz and 470 MHz – 800 MHz are determined. The calibration of the PD sources for used in the development of Wireless Sensor Network (WSN) is presented. A method of estimating absolute PD activity level from a radiometric measurement by relating effective radiated power (ERP) to PD intensity using a PD calibration device is proposed and demonstrated. The PD sources have been simulated using CST Microwave Studio. The simulations are used to establish a relationship between radiated PD signals and PD intensity as defined by apparent charge transfer. To this end, the radiated fields predicted in the simulations are compared with measurements. There is sufficient agreement between simulations and measurements to suggest the simulations could be used to investigate the relationship between PD intensity and the field strength of radiated signals [3].
Supervisor: Lazaridis, Pavlos ; Glover, Ian Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: TA Engineering (General). Civil engineering (General) ; TK Electrical engineering. Electronics Nuclear engineering