Use this URL to cite or link to this record in EThOS:
Title: Tribological interactions of the finger pad and tactile displays
Author: Dzidek, Brygida Maria
ISNI:       0000 0004 6494 6516
Awarding Body: University of Birmingham
Current Institution: University of Birmingham
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
This thesis summarise the results of an investigation of the tribological interactions of the human finger pad with different surfaces and tactile displays. In the wide range of analyses of the mechanical properties of the finger pad, an attempt has been made to explain the nature of the interactions based on critical material parameters and experimental data. The experimental data are presented together with detailed modelling of the contact mechanics of the finger pad compressed against a smooth flat surface. Based on the model and the experimental data, it was possible to account of the loading behaviour of a finger pad and derive the Young’s modulus of the fingerprint ridges. The frictional measurements of a finger pad against smooth flat surfaces are consistent with an occlusion mechanism that is governed by first order kinetics. In contrast, measurements against a rough surface demonstrated that the friction is unaffected by occlusion since Coulombic slip was exhibited. The thesis includes an investigation of critical parameters such as the contact area. It has been shown that four characteristic length scales, rather than just two as previously assumed, are required to describe the contact mechanics of the finger pad. In addition, there are two characteristic times respectively associated with the growth rates of junctions formed by the finger pad ridges and of the real area of contact. These length and time scales are important in understanding how the Archardian-Hertzian transition drives both the large increase of friction and the reduction of the areal load index during persisting finger contacts with impermeable surfaces. Established and novel models were evaluated with statistically meaningful experiments for phenomena such as lateral displacement, electrostatic forces and squeeze-film that have advanced applications.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: TJ Mechanical engineering and machinery