Use this URL to cite or link to this record in EThOS:
Title: Learning transformation-invariant visual representations in spiking neural networks
Author: Evans, Benjamin D.
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2012
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
This thesis aims to understand the learning mechanisms which underpin the process of visual object recognition in the primate ventral visual system. The computational crux of this problem lies in the ability to retain specificity to recognize particular objects or faces, while exhibiting generality across natural variations and distortions in the view (DiCarlo et al., 2012). In particular, the work presented is focussed on gaining insight into the processes through which transformation-invariant visual representations may develop in the primate ventral visual system. The primary motivation for this work is the belief that some of the fundamental mechanisms employed in the primate visual system may only be captured through modelling the individual action potentials of neurons and therefore, existing rate-coded models of this process constitute an inadequate level of description to fully understand the learning processes of visual object recognition. To this end, spiking neural network models are formulated and applied to the problem of learning transformation-invariant visual representations, using a spike-time dependent learning rule to adjust the synaptic efficacies between the neurons. The ways in which the existing rate-coded CT (Stringer et al., 2006) and Trace (Földiák, 1991) learning mechanisms may operate in a simple spiking neural network model are explored, and these findings are then applied to a more accurate model using realistic 3-D stimuli. Three mechanisms are then examined, through which a spiking neural network may solve the problem of learning separate transformation-invariant representations in scenes composed of multiple stimuli by temporally segmenting competing input representations. The spike-time dependent plasticity in the feed-forward connections is then shown to be able to exploit these input layer dynamics to form individual stimulus representations in the output layer. Finally, the work is evaluated and future directions of investigation are proposed.
Supervisor: Braddick, Oliver J. ; Stringer, Simon M. Sponsor: Economic and Social Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Computational neuroscience ; Neuroscience ; Object Recognition ; STDP ; Spiking Neural Network ; Visual System