Use this URL to cite or link to this record in EThOS:
Title: The role of cortical oscillations in the control and protection of visual working memory
Author: Myers, Nicholas
ISNI:       0000 0004 6498 3720
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2015
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Visual working memory (WM) is the ability to hold information in mind for a short time before acting on it. The capacity of WM is strikingly limited. To make the most of this precious resource, humans exhibit a high degree of cognitive flexibility: We can prioritize information that is relevant to behavior, and inhibit unnecessary distractions. This thesis examines some behavioral and neural correlates of flexibility in WM. When information is of particular importance, anticipatory attention can be directed to where it will likely appear. Oscillations in visual cortex, in the 10-Hz range, play an important role in regulating excitability of such prioritized locations. Chapter 4 describes how even spontaneous fluctuations in 10-Hz synchronization (measured by electroencephalography, EEG) before encoding influence WM. Chapters 2 and 3 describe how attention can be directed retrospectively to items even if they are already stored in WM. Chapter 3 discusses how retrospective cues change neural synchronization similarly to anticipatory cues. Behavioral and neural measures additionally indicate that the boosting of an item through retrospective cues does not require prolonged deployment of attention: rather, it may be a transient process. The second half of this thesis additionally examines how items are represented in visual WM. Chapter 5 summarizes a study using pattern analysis of magnetoencephalographic (MEG) and EEG data to decode features of visual templates stored in WM. Decoding appears transiently around the time when potential target stimuli are expected, in line with a flexible reactivation mechanism. Chapter 6 further examines separate cortical networks involved in protecting vs. updating items in WM, and tests whether task relevance changes how well WM contents can be decoded. Finally, Chapter 7 summarizes the thesis and discusses how attentional flexibility can merge WM with a wider range of sources of behavioral control.
Supervisor: Stokes, Mark ; Nobre, Anna Christina Sponsor: Wellcome Trust
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Neurosciences ; Psychology ; Experimental ; Electroencephalography ; Multivariate Pattern Analysis ; Selective Attention ; Working Memory ; Magnetoencephalography