Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.730234
Title: The influence of morphology, AGN and environment on the quenching histories of galaxies
Author: Smethurst, Rebecca
ISNI:       0000 0004 6495 6685
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
Abstract:
What drives the transition of galaxies from the disc dominated, star forming blue cloud to the elliptical dominated, quiescent red sequence? What role does the morphology, central supermassive black hole and galaxy environment play in this transition? I have attempted to answer these questions by using Bayesian statistics to infer a simple star formation history (SFH) describing the time, tq, and exponential rate, τ, that quenching occurs in a galaxy. I use both the optical and NUV photometry of a galaxy in order to infer the posterior distribution of its SFH across the two dimensional [tq, τ] parameter space. I then utilise the Galaxy Zoo 2 morphological classifications to obtain a morphology weighted, combined population distribution across each quenching parameter for a sample of galaxies. I apply this method across the blue cloud, green valley and red sequence of a sample of 126,316 galaxies and find a clear difference between the quenching timescales preferred by smooth and disc weighted populations, with three major routes through the green valley dominated by smooth (rapid rates, attributed to major mergers), intermediately classified (intermediate rates, attributed to galaxy interactions) and disc morphologies (slow rates, attributed to secular evolution). I hypothesise that morphological changes occur in systems which have undergone quenching with an exponential rate, τ < 1.5 Gyr, in order for the evolution of galaxies in the green valley to match the ratio of smooth to disc galaxies observed in the red sequence. I repeat this SFH analysis for a sample of 1,244 Type 2 AGN host galaxies and find statistical evidence for recent, rapid quenching, suggesting that this may be caused by AGN feedback. However I find that rapid quenching rates cannot account for all the quenching across the AGN host population; slow quenching rates, attributed to secular evolution, are also significant in the evolution of AGN host galaxies. I investigate this possible secular co-evolution of galaxies and black holes further by measuring the black hole masses of a sample of 101 bulgeless AGN host galaxies and compare them to typical black hole-galaxy scaling relations. I find that the measured black holes of the bulgeless galaxies are ~1-2 dex more massive than they should be, given their lack of bulges. This suggests that black hole-galaxy scaling relations may arise due to mutual correlations to the overall gravitational potential of the dark matter halo of the galaxy. I also considered the effect of the group environment on the time and rate that quenching occurs, with respect to the group-centric radius, for 4,629 satellite galaxies. I find that although mergers, mass quenching and morphological quenching are all occurring in groups, environmentally driven quenching mechanisms are also prevalent. However, I find that these environmentally driven quenching processes are not correlated with the velocity of a satellite within a group, ruling out ram pressure stripping as a possible mechanism. I discuss how all of these quenching mechanisms are likely to affect a galaxy across its lifetime, acting in concert to reduce the SFR, which in turn produces the wide distribution of quenching timescales seen across the colour-magnitude diagram. I discuss ideas for future work using the method employed in this work, including applying it to forthcoming data from large integral field unit surveys.
Supervisor: Lintott, Chris Sponsor: Science and Technology Facilities Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.730234  DOI: Not available
Keywords: Astrophysics ; Astronomy ; Quenching ; Star formation history ; Extragalactic astrophysics ; Galaxies
Share: