Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.730214
Title: Computation by origami-templated DNA walkers
Author: Boemo, Michael Austin
ISNI:       0000 0004 6495 3919
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2016
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Restricted access.
Access from Institution:
Abstract:
Interactions between DNA molecules can be used to perform computation. These DNA computing systems often use DNA molecules as freely diusing reactants in a well-mixed solution. We demonstrate how DNA walkers tethered to an origami-templated track can perform computation. A DNA walker can block a track that intersects with its own, preventing another walker from stepping down this blocked track. These blockages are primitive operations that can be used to perform computation. This thesis demonstrates how blocking interactions between DNA walkers can evaluate formulae posed in propositional logic. When anchorages in the track are viewed as networked machines and the DNA walker is viewed as a coordinated message passed between them, DNA walker circuits can be modelled as a distributed system. Techniques from formal veri- cation can be used to check this system for errors, determining the probability with which the system will end up in a certain state. This forms the basis of a compiler that can automatically design a DNA walker circuit that evaluates a given propositional formula within a specied error tolerance. To show how DNA walker circuits can be simplied, we create a propositional logic system called blocking logic that is proven to be both sound and complete. DNA walker circuits can be implemented and measured experimentally by using fluorescence spectrophotometry to track the position of a walker on the track. To demonstrate proof of principle, circuits were built that implement NOT and NOR operators. To make these circuits operate with minimal error, dierent sources of possible error were investigated and quantied. Cumulatively, the novel contributions that this thesis makes to the eld are: • the experimental design and implementation of a DNA computing system that uses DNA walkers, • probabilistic model checking software that automatically designs these DNA walker circuits, • a propositional logic system that can simplify a DNA walker circuit to an equivalent circuit that uses fewer tracks.
Supervisor: Cardelli, Luca ; Turberfield, Andrew Sponsor: European Commission ; Marie Curie
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.730214  DOI: Not available
Keywords: Computer science ; Biological Physics ; formal languages ; DNA computing ; nanotechnology
Share: