Use this URL to cite or link to this record in EThOS:
Title: Exploring the use of mercury in reconstructing the environmental impacts of Large Igneous Provinces
Author: Percival, Lawrence
ISNI:       0000 0004 6497 8753
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Large Igneous Provinces (LIPs) represent geologically rapid emplacements of vast quantities of igneous material into/onto Earth's crust. There is a marked correlation in the known ages of LIPs and Mesozoic extinctions and other environmental perturbations, suggesting a possible causal link between these events. However, uncertainties in matching LIP basalt ages to the stratigraphic record of Mesozoic events mean that a sedimentary tracer of volcanism would better indicate a precise coincidence between the two phenomena. Mercury (Hg) has shown potential as such a proxy. Volcanism is a major source of Hg to the natural environment, and its relatively long atmospheric residence time (0.5–2 years) allows global distribution of the element before it is deposited to sediments. However, questions remain about how the manner of LIP emplacement might influence its impact on the Hg cycle, as well as how sedimentary processes may locally overprint any global signal. Here, the Hg records of three Mesozoic events are investigated: the end-Triassic extinction (TJ: ~201.5 Ma), Cretaceous Oceanic Anoxic Event 2 (OAE 2: ~94 Ma), and the latest Cretaceous (K–Pg: ~67–66 Ma). These events coincided with markedly different LIPs: OAE 2 with multiple submarine LIPs; the K–Pg and TJ with subaerial LIPs; with the TJ also featuring release of additional thermogenic volatiles from intrusion of organic-rich lithologies by LIP sills. Additionally, mercury is used with osmium and carbon isotopes to study the temporal relationships between volcanism, weathering, and the carbon cycle during the Toarcian Oceanic Anoxic Event (~183 Ma). This work highlights the links between LIP volcanism and other surface processes, and shows that subaerial LIPs featuring thermogenic emissions are most likely to perturb the global Hg cycle, with the record of such perturbations dependent on the nature of the sedimentary archive.
Supervisor: Hesselbo, Stephen ; Mather, Tamsin ; Jenkyns, Hugh Sponsor: Natural Environment Research Council
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Volcanology ; Palaeoclimate ; Mercury ; Geochemistry ; Mass extinctions ; Volcanism