Use this URL to cite or link to this record in EThOS:
Title: Metamaterial based superdirectivity
Author: Li, Lianbo
ISNI:       0000 0004 6499 573X
Awarding Body: University of Oxford
Current Institution: University of Oxford
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
A model-supporting, simple, compact, robust and high efficiency two- element parasitic superdirective array comprising electrically small reso- nant metamaterial elements, namely singly split resonator rings (SSRRs), is predicted by an analytical model and is verified by CST simulation re- sults. The analytical model is built by combining a method of calculating a two-SSRR array's far fild radiated energy density and a well working equivalent circuit for a two-SSRR parasitic array. This model is capable of easily but accurately predicting the far field radiation behaviours of an electrically small parasitic array of two SSRRs (the two SSRRs are not necessarily standard and identical), based on certain information of the array, namely the SSRRs' dimensions, the SSRRs' electrical components (L, C and R), the SSRRs' rotating orientation angles (α1 and α2), the two SSRRs's separation (d) and the array's operation frequency. The impor- tance of this analytical model in designing parasitic superdirective arrays is discussed. Simulation results show that the model predicted two-SSRR parasitic superdirective structure (the `CC' structure) can achieve an end- fire directivity of 4.36, with an elements' separation d = 4mm working at 1:914GHz, and can maintain an efficiencyciency as high as 98:6%. After a short discussion of the design principle behind the `CC' structure, improved su- perdirective structures of are identified and studied based on simulation results. Among these structures, the 'CCLr' structure can achieve the largest directivity value of 5.06 (very close to 5.25, the theoretical limit value of a two-dipole array) with a moderate efficiency of 81:4%. A com- parison between these two-SSRR parasitic superdirective structures (the `CC' and its improved versions) and two commercial two-element Yagi an- tennas show that these two-SSRR structures achieve better directive per- formances than the commercial two-element Yagi antennas do. Through performing the study of near field energy ow for magnetic dipole based structures (analytical results) and SSRR based structures (simulation re- sults), with the help of the concept of causal surfaces, the physical reason behind the superdirectivity phenomenon is revealed.
Supervisor: Stevens, Chris ; Shamonina, Ekaterina Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available