Use this URL to cite or link to this record in EThOS:
Title: Maximizing propylene selectivity while minimizing dry gas yield in FCC unit through post synthetic modifications of nano ZSM-5
Author: Alnaimi, Essa
ISNI:       0000 0004 6498 9962
Awarding Body: University of Manchester
Current Institution: University of Manchester
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
This research explored different catalytic cracking zeolite additives to improve propylene selectivity and minimize dry gas yield. A comprehensive study of the effect of zeolite structure, pore system and crystal size on maximizing propylene production in FCC unit and the effect of post synthetic modifications on the physicochemical properties and cracking activity of ZSM-5 was investigated using X-ray diffraction (XRD), pyridine adsorption fourier transform infra-red (FTIR), 27Al and 29Si magic-angle spinning nuclear magnetic resonance (MAS NMR) and the catalytic cracking using n-heptane, as a model compound for heavy naphtha. The catalytic performances of these additives were evaluated in a fixed-bed reactor unit using n-heptane as a model compound for naphtha at temperatures 450 - 500 oC and W/F 38 - 92 gcat.h/mol. A range of zeolites were tested with ZSM-5 showing the optimum results at high feed conversion. Further studies on ZSM-5 crystal size illustrated that nano ZSM-5 (300 nm) was superior compared to the regular ZSM-5 (2000 - 4000 nm) in achieved conversion level and propylene selectivity. These improvements were attributed to the shorter path lengths for the reactant reducing diffusion constraints significantly. Modifying nano ZSM-5 acidity using steaming, acid leaching and silanation showed significant improvement over nano ZSM-5 parent. Mild steaming of nano ZSM-5 improved both n-heptane conversion and propylene selectivity whilst severe steaming only improved propylene selectivity. This work attempted to address the often discussed catalytic activity enhancement from mild steaming and identified newly created moderate acid sites as the source of increased activity. Dealumination by acid leaching decreased the total aluminium content of nano ZSM-5 and changed the Brønsted/Lewis ratio. Increasing the B/L ratio, increased the conversion and propylene selectivity. In addition, this research focussed for the first time on the silanation of nano ZSM-5 and its effect on n-heptane cracking, in particular, propylene and dry gas selectivity. Silica was deposited on the external surface of nano ZSM-5 neutralising the acidic sites and as a result, dry gas yield was significantly decreased due to the elimination of non-selective cracking. However, the trade off with conversion was high.
Supervisor: Garforth, Arthur Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: Nano ZSM-5 acid leaching ; Nano ZSM-5 Acidity enhancement ; Mild steaming ; FCC improvements ; Propylene enhancements ; Nano ZSM-5 modifications