Use this URL to cite or link to this record in EThOS:
Title: Increasing service visibility for future, softwarised air traffic management data networks
Author: White, Kyle John Sinclair
ISNI:       0000 0004 6421 7903
Awarding Body: University of Glasgow
Current Institution: University of Glasgow
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Access from Institution:
Air Traffic Management (ATM) is at an exciting frontier. The volume of air traffic is reaching the safe limits of current infrastructure. Yet, demand for more air traffic continues. To meet capacity demands, ATM data networks are increasing in complexity with: greater infrastructure integration, higher availability and precision of services; and the introduction of unmanned systems. Official recommendations into previous disruptive outages have high-lighted the need for operators to have richer monitoring capabilities and operational systems visibility, on-demand, in response to challenges. The work presented in this thesis, helps ATM operators better understand and increase visibility into the behaviour of their services and infrastructure, with the primary aim to inform decision-making to reduce service disruption. This is achieved by combining a container-based NFV framework with Software- Defined Networking (SDN). The application of SDN+NFV in this work allows lightweight, chain-able monitoring and anomaly detection functions to be deployed on-demand, and the appropriate (sub)set of network traffic routed through these virtual network functions to provide timely, context-specific information. This container-based function deployment architecture, allows for punctual in-network processing through the instantiation of custom functionality, at appropriate locations. When accidents do occur, such as the crash of a UAV, the lessons learnt should be integrated into future systems. For one such incident, the accident investigation identified a telemetry precursor an hour prior. The function deployment architecture allows operators to extend and adapt their network infrastructure, to incorporate the latest monitoring recommendations. Furthermore, this work has examined relationships in application-level information and network layer data representing individual examples of a wide range of generalisable cases including: between the cyber and physical components of surveillance data, the rate of change in telemetry to determine abnormal aircraft surface movements, and the emerging behaviour of network flooding. Each of these examples provide valuable context-specific benefits to operators and a generalised basis from which further tools can be developed to enhance their understanding of their networks.
Supervisor: Not available Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: QA75 Electronic computers. Computer science ; QA76 Computer software