Use this URL to cite or link to this record in EThOS:
Title: Development and encoding of visual statistics in the primary visual cortex
Author: Rudiger, Philipp John Frederic
ISNI:       0000 0004 6421 3945
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
How do circuits in the mammalian cerebral cortex encode properties of the sensory environment in a way that can drive adaptive behavior? This question is fundamental to neuroscience, but it has been very difficult to approach directly. Various computational and theoretical models can explain a wide range of phenomena observed in the primary visual cortex (V1), including the anatomical organization of its circuits, the development of functional properties like orientation tuning, and behavioral effects like surround modulation. However, so far no model has been able to bridge these levels of description to explain how the machinery that develops directly affects behavior. Bridging these levels is important, because phenomena at any one specific level can have many possible explanations, but there are far fewer possibilities to consider once all of the available evidence is taken into account. In this thesis we integrate the information gleaned about cortical development, circuit and cell-type specific interactions, and anatomical, behavioral and electrophysiological measurements, to develop a computational model of V1 that is constrained enough to make predictions across multiple levels of description. Through a series of models incorporating increasing levels of biophysical detail and becoming increasingly better constrained, we are able to make detailed predictions for the types of mechanistic interactions required for robust development of cortical maps that have a realistic anatomical organization, and thereby gain insight into the computations performed by the primary visual cortex. The initial models focus on how existing anatomical and electrophysiological knowledge can be integrated into previously abstract models to give a well-grounded and highly constrained account of the emergence of pattern-specific tuning in the primary visual cortex. More detailed models then address the interactions between specific excitatory and inhibitory cell classes in V1, and what role each cell type may play during development and function. Finally, we demonstrate how these cell classes come together to form a circuit that gives rise not only to robust development but also the development of realistic lateral connectivity patterns. Crucially, these patterns reflect the statistics of the visual environment to which the model was exposed during development. This property allows us to explore how the model is able to capture higher-order information about the environment and use that information to optimize neural coding and aid the processing of complex visual tasks. Using this model we can make a number of very specific predictions about the mechanistic workings of the brain. Specifically, the model predicts a crucial role of parvalbumin-expressing interneurons in robust development and divisive normalization, while it implicates somatostatin immunoreactive neurons in mediating longer range and feature-selective suppression. The model also makes predictions about the role of these cell classes in efficient neural coding and under what conditions the model fails to organize. In particular, we show that a tight coupling of activity between the principal excitatory population and the parvalbumin population is central to robust and stable responses and organization, which may have implications for a variety of diseases where parvalbumin interneuron function is impaired, such as schizophrenia and autism. Further the model explains the switch from facilitatory to suppressive surround modulation effects as a simple by-product of the facilitating response function of long-range excitatory connections targeting a specialized class of inhibitory interneurons. Finally, the model allows us to make predictions about the statistics that are encoded in the extensive network of long-range intra-areal connectivity in V1, suggesting that even V1 can capture high-level statistical dependencies in the visual environment. The final model represents a comprehensive and well constrained model of the primary visual cortex, which for the first time can relate the physiological properties of individual cell classes to their role in development, learning and function. While the model is specifically tuned for V1, all mechanisms introduced are completely general, and can be used as a general cortical model, useful for studying phenomena across the visual cortex and even the cortex as a whole. This work is also highly relevant for clinical neuroscience, as the cell types studied here have been implicated in neurological disorders as wide ranging as autism, schizophrenia and Parkinson’s disease.
Supervisor: Bednar, James ; Thiele, Alexander Sponsor: Engineering and Physical Sciences Research Council (EPSRC)
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: neural connectivity ; observed neural responses ; primary visual cortex ; cortical development ; cell-type specific interactions ; model ; parvalbumin-expressing interneurons