Use this URL to cite or link to this record in EThOS: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.726628
Title: Organometallic neptunium complexes : synthesis, structure and reduction chemistry
Author: Dutkiewicz, Michal Seweryn
ISNI:       0000 0004 6421 3785
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Abstract:
The aim of the work described in this thesis was to develop a more extensive knowledge of the chemistry of neptunium compounds by making rare, air- and moisture sensitive, low formal oxidation state neptunium compounds with full structural and synthetic characterization. The thesis contains three results chapters. Chapter one introduces neptunium chemistry as a background to the results presented. The first review on the molecular non-aqueous neptunium chemistry is provided and the literature reports to date discussed in the context of this. Chapter two describes exploratory synthetic and structural investigations of the organoneptunium complexes supported by the cyclopentadienyl anion, Cp = (C5H5)-, and the (trimethylsilyl)cyclopentadienyl anion, Cp' = (C5H4[Si(CH3)3])-. The syntheses of [Np(Cp)3]n and Np(Cp')3 complexes are detailed and the effect of the trimethylsilyl group of the ligand on the structure and reactivity have been investigated. Complexes were characterized by single crystal X-ray diffractometry, NMR and ATR(IR) spectroscopy. Both organoneptunium complexes were studied in reactions designed to expand the neptunium redox envelope. Notably, the complex Np(Cp')3 is reduced by KC8 in the presence of 2.2.2-cryptand to afford a product assigned as neptunium(II) complex, K(2.2.2-cryptand)[Np(Cp')3] that is thermally very unstable above approx. -10 ºC, in direct analogy to previously reported uranium, thorium and lanthanide complexes of the general formula, K(2.2.2-cryptand)[M(Cp')3]. The reaction between Np(Cp)3Cl and KCp in THF afforded the unanticipated K[NpIII(Cp)4] product as a result of a single-electron reduction presumably arising from Np–C σ-bond homolysis reactivity. This behaviour appears to be unique amongst the actinides for the An(IV)/An(III) redox couple. Chapter three focuses on oxo-bridged homo and heterometallic complexes. The reaction of NpCp3 with dioxygen afforded not only the simple oxide, (μ-O)[An(Cp)3]2, but also a small quantity of the unexpected new trinuclear oxo- neptunium(IV) compound [{(Cp3Np)(μ-O)}2{Np(Cp)2}], which interestingly contains the rare C2v-symetric [An(Cp)2]2+ structural moiety. This oxo-bridged environment is not paralleled in uranium chemistry. The two isostructural oxides, (μ-O)[An(Cp)3]2 (An = U, Np), allow a comparative study of the magnetic exchange phenomena between the two actinide centres demonstrating an exceedingly strong antiferromagnetic coupling, which is largely independent of the communicated Kramers NpIV (5f3, 4I9/2) or non-Kramers UIV (5f2, 3H4) ions. To design heterobimetallic systems, the uranyl(VI) complexes, [(UVIO2)(THF)(H2L)], supported by the calix[4]pyrrole Schiff base macrocycles, H4LOct and H4LEt, were singly-reduced to uranyl(V) with either of the actinide complexes Np(Cp)3 or U(Cp)3, affording isostructural [(Cp3)AnIVOUVO(THF)(H2L)]. Preliminary investigations of the magnetism of the AnIV-O-UV are reported, although their analysis gave counterintuitive results. Chapter four explores the redox chemistry and molecular and electronic structure of neptunium(III) complexes of the doubly deprotonated trans-calix[2]benzene[2]pyrrole, H2(LAr), macrocycle which has a unique π-bonding potential and conformational flexibility. Interestingly, the reactions with neptunium(IV) chloride yielded mono- and dinuclear neptunium(III) complexes, [(LAr)NpCl] and [(LAr)Np2Cl4(THF)3], with a subsequent elimination of the ligand radical; both complexes adopted η6:κ1:η6:κ1 bis(arene) sandwiched structural motif. In a direct analogy to the redox behaviour occurring in the salt metathesis between Np(Cp)3Cl and KCp, the spontaneous reduction derives from the favourable Np(IV)/Np(III) redox system. The reduction of complex [(LAr)NpCl] with NaK3 in DME produces near-black solutions consistent with [NpII(LAr)(DME)] that in the absence of excess NaK3 gradually convert to the metallated (LAr-H)3- neptunium(III) complex, [K(DME)(LAr-H)NpIII(OMe)]2, featuring the actinide centre bound with a ‘metallocene-type’ geometry provided by the two η5-bound pyrrolides of the ligand. The neptunium(III) compounds were characterized in the solid state by single crystal X-ray diffractometry, ATR(IR) spectroscopy and in a solution by NMR and UV-Vis-NIR spectroscopy.
Supervisor: Arnold, Polly ; Pulham, Colin ; Love, Jason Sponsor: European Commission
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID: uk.bl.ethos.726628  DOI: Not available
Keywords: neptunium ; organometallic chemistry ; complexes ; reduction chemistry
Share: