Use this URL to cite or link to this record in EThOS:
Title: Pathways to sustainable catalysis : from novel catalysts to mechanistic understanding
Author: Neate, Peter Gregory Nigel
ISNI:       0000 0004 6421 2731
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Thesis embargoed until 31 Dec 2100
Access from Institution:
Catalysis allows for the controlled formation of new bonds, whilst reducing both time and energy expenditure in the process. Catalysis has traditionally been the realm of precious metals, which have been used to carry out a bewildering array of reactions. However, there is an ever-increasing drive for the development of catalytic methodology employing sustainable and environmentally benign catalysts. Two such candidates are organocatalysis, omitting the need for metals where possible, or the use of iron catalysis. Two key areas to the advancement of the of field catalysis are the identification and development of new catalysts as well as an understanding of the mechanisms of established catalytic processes. Novel catalysts can provide many benefits such as enhanced or even novel reactivity, access to new classes of substrates or simply be more readily accessible compared with previously developed catalysts. To this end, the first example of Lewis-base-catalysis using the recently developed cyclopropenimine motif is reported. This was exploited in the trifluoromethylation of aldehydes and ketones using the Rupert-Prakash reagent (Scheme A-1). Scheme A-1 Cyclopropenimine-catalysed trifluoromethylation of aldehydes and ketones Developing an understanding of catalytic methodologies in the terms of their mechanism and active species is also a key area in catalysis. Insight into these can direct the expansion of these systems in terms of both more effective catalysts and tailoring reaction conditions as examples. The iron-catalysed hydromagnesiation of styrene derivatives was studied in detail. This culminated in a proposed mechanism, involving a novel hydride transfer process (Scheme A-2). Studies were carried out using a combination of kinetic analysis and in situ Mössbauer spectroscopy, as well as successfully isolating and studying the reactivity of a catalytically-relevant, formal iron(0)-species.
Supervisor: Thomas, Stephen ; Cowley, Michael Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: catalysis ; iron catalysis ; sustainable catalysts ; synthesis