Use this URL to cite or link to this record in EThOS:
Title: Investigation into the destructive and adaptive responses of neural cells to stress
Author: Hasel, Philip
ISNI:       0000 0004 6421 9300
Awarding Body: University of Edinburgh
Current Institution: University of Edinburgh
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Homeostasis within the neuro-glial unit is essential to the longevity of neurons. Conversely, loss of homeostasis, particularly of Ca2+ levels, of redox balance and of ATP, contribute to neuronal loss and dysfunction in many neurodegenerative and neurological disorders. This thesis is centred on better understanding the vulnerability of neurons to stress, as well as adaptive responses to these stresses. Since neurodegenerative conditions associated with Ca2+, redox and bioenergetic dyshomeostasis are often characterised by early dendritic pathology, I first studied dendritic vs. somatic responses of primary cortical neurons to these types of challenges in real-time. Using a wide range of genetically-encoded probes to measure Ca2+, ATP, NADH, glutathione and glutamate, I show that dendrites are selectively vulnerable to oxidative stress, excitotoxicity as well as to metabolic demand induced by action potential (AP) burst activity. However, I provide evidence that neurons undergoing energetically demanding AP burst activity can adjust their metabolic output by increasing mitochondrial NADH production in a manner dependent on the mitochondrial calcium uniporter (MCU), as well as increase their capacity to buffer their intracellular redox balance. Finally, I have studied transcriptional programs in astrocytes triggered by neurons and neuronal activity to better understand adaptive signaling between different cell types in the neuro-glial unit. I developed a novel system combining neurons and astrocytes from closely-related species, followed by RNA-seq and in silico read sorting. I uncovered a program of neuron-induced astrocytic gene expression which drives and maintains astrocytic maturity and neurotransmitter uptake function. In addition I identified a novel form of synapse-to-nucleus signaling, mediated by glutamatergic activity and acutely regulating diverse astrocytic genes involved in astrocyte-neuron metabolic coupling. Of note, neuronal activity co-ordinately induced astrocytic genes involved in astrocyte-to-neuron thyroid hormone signaling, extracellular antioxidant defences, and the astrocyte-neuron lactate shuttle, suggesting that this non cell-autonomous signaling may form part of the homeostatic machinery within the neuro-glial unit.
Supervisor: Hardingham, Giles ; Wyllie, David Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available
Keywords: adaptive responses ; stress ; dendrites ; neurons ; dendritic pathology ; astrocytes ; transcriptional programs