Use this URL to cite or link to this record in EThOS: | https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.723393 |
![]() |
|||||||
Title: | Robust coordinated damping control of power systems with multi-terminal VSC-HVDC system and FACTS | ||||||
Author: | Li, Can |
ISNI:
0000 0004 6425 1554
|
|||||
Awarding Body: | University of Birmingham | ||||||
Current Institution: | University of Birmingham | ||||||
Date of Award: | 2017 | ||||||
Availability of Full Text: |
|
||||||
Abstract: | |||||||
This thesis investigates the robust and coordinated design of multiple damping controllers to ameliorate the damping characteristics of a bulky power system. A new methodology is proposed in this thesis for VSC-MTDC and FACTS damping controllers based on multiple control objectives and system multi-model. The key feature of the methodology is the robust and coordinated performance of the damping controllers. The formulated BMI-based optimization problem is solved systematically via a two- step approach. System multi-model is established in the design for the robustness of the controllers under system disturbances and changing operating conditions. The sequential design of a series of SISO controllers with properly selected feedback signals minimizes the negative interactions among the controllers. The approach is applied to a three-terminal VSC-MTDC and subsequently exerted with one terminal of VSC-MTDC and a TCSC to incorporate multiple devices and examine the generality and feasibility of the design. Given the flexible internal control configuration of VSC converter, the assessment of the impact of the d-q decoupled control modes on the effectiveness and flexibility of the damping controllers is carried out. Real-Time Digital Simulator is used to examine the effectiveness and robustness of the damping controllers under various system operating conditions and disturbances.
|
|||||||
Supervisor: | Not available | Sponsor: | Not available | ||||
Qualification Name: | Thesis (Ph.D.) | Qualification Level: | Doctoral | ||||
EThOS ID: | uk.bl.ethos.723393 | DOI: | Not available | ||||
Keywords: | TK Electrical engineering. Electronics Nuclear engineering | ||||||
Share: |