Use this URL to cite or link to this record in EThOS:
Title: Development of the boundary conditions required for simulating a wave tank using smoothed particle hydrodynamics
Author: Pearce, Mark Graham
ISNI:       0000 0004 6422 5268
Awarding Body: University of Southampton
Current Institution: University of Southampton
Date of Award: 2017
Availability of Full Text:
Access from EThOS:
Full text unavailable from EThOS. Please try the link below.
Access from Institution:
Smoothed Particle Hydrodynamics, SPH, is a Lagrangian method that has been applied to a number of fields including maritime applications. However little work has been done concerning the simulation of the motion of ships' hulls. A weakness of SPH is in the modelling of boundaries, both permeable and impermeable. This thesis investigates some of the latest SPH methods used to simulate these boundaries. Particular emphasis is placed upon the development of an approach that idealises the permeable inflow and outflow boundaries of a domain that are required to simulate the boundaries of a wave tank. In the method presented the inflow boundary has been designed such that it can also generate waves. This allows for the simulation of a ship hull subject to head waves. The inflow boundary is also capable of creating a mean flow speed along with the wave generation. The outflow boundary serves as both a plane which allows particles that have crossed it to be removed and also incorporates a sponge layer that is designed to damp out incoming waves and prevent any unphysical wave reflection. These developments, used together, allow a small section of a wave tank to be simulated, this requires a minimum of computational resources. Each new development has been tested against published data from experiments or numerical simulation. The computational models discussed in this thesis compare the performance of the new approach against experimental data and simulations using both classic SPH and Reynolds-Averaged Navier-Stokes methods. The wave generation and damping methods have been compared against the motion predicted by the Airy wave theory. The hull motion simulations have been compared against Wigley hull experimental data.
Supervisor: Hudson, Dominic Sponsor: Not available
Qualification Name: Thesis (Ph.D.) Qualification Level: Doctoral
EThOS ID:  DOI: Not available